Pediatric Sports Injuries

The Sports Medicine Core Curriculum Lecture Series
Sponsored by an ACEP Section Grant
Author(s): Timothy Rupp, MD FACEP, FAAEM and Jolie C. Holschen, MD FACEP
Editor: Jolie C. Holschen, MD FACEP
Pediatric Sports Injuries

Injury Risk Factors:

Extrinsic

- Facilitate the manifestation of injury
- Training methods
- Equipment

Intrinsic

- Predispose the athlete to injury outcome
- Biologic (previous injury)
- Psychosocial (life stress)
Pediatric Sports Injuries

Injury Risk Factors:

Modifiable
- Altered by injury prevention strategies
- Balance
- Strength
- Flexibility

Nonmodifiable
- Affect relation between modifiable risk factors and injury
- Age
- Sex
Pediatric Sports Injuries: Risk Factors

Adolescent growth spurt
 Increased muscle-tendon tightness; decreased physeal strength;
 bone mineralization lags behind linear bone growth

Age
 Faster, heavier, and stronger; more force on contact

Biologic Maturity
 Chronologic age and biologic age may vary

Body Size
 Heavier weight=greater force; absorbed through bones and joints

Coaching
 Inexperience; improper training
Pediatric Sports Injuries: Risk Factors

Fitness
 Proprioceptive ability, strength, endurance, flexibility, and adiposity

Gender
 Example: basketball-related knee injuries- girls > boys

Previous Injury
 Predispose to further injury; physiologic deficiencies result from initial injury or inadequate rehabilitation

Psychology
 Life stress is a predictor of injury
Physeal Fractures

Skeletally immature

Physis is the transition zone between the metaphysis and the epiphysis in long bones

“Weakest link”
Salter-Harris Classification

Type I:
physeal injury or disruption; often without apparent radiographic abnormality;
tenderness to palpation on physical examination is present even without radiographic
abnormality in the skeletally immature, the SH I of the distal fibula is the most common
acute injury of the foot and ankle

Type II:
most common; metaphyseal and physeal injury

Type III:
epiphyseal and physeal
Tillaux fracture is an example of a SH III fracture of the distal anterolateral tibial epiphysis;
highest incidence among adolescents ages 12-14

Type IV:
metaphyseal, physeal, and epiphyseal

Type V:
axial compression or delayed injury only apparent retrospectively
Salter Harris Injuries

Unstable Salter I

Tillaux fracture (III)
Buckle ‘Torus’ Fractures

2 to 16 years w/ knee injury < 7 days
750 enrolled: 670 with xrays
Mean age was 11.8 +/- 3.1 years
70 fractures
OKR 100% sensitive, 43% specific
Normal Elbow Radiology

Anterior Humeral Line- thru middle 1/3 capitellum

Radiocapitellar Line- along radial shaft intersects capitellum
Elbow ossification centers

Order of Appearance of the individual ossification centers is C-R-I-T-O-E: (F/M)

<table>
<thead>
<tr>
<th>Center</th>
<th>Age (F)</th>
<th>Age (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitellum</td>
<td>1 yo/2 yo</td>
<td></td>
</tr>
<tr>
<td>Radial head</td>
<td>3 yo/4 yo</td>
<td></td>
</tr>
<tr>
<td>Internal (medial) epicondyle</td>
<td>5 yo/6 yo</td>
<td></td>
</tr>
<tr>
<td>Trochlea</td>
<td>7 yo/8 yo</td>
<td></td>
</tr>
<tr>
<td>Olecranon</td>
<td>9 yo/10 yo</td>
<td></td>
</tr>
<tr>
<td>External (lateral) epicondyle</td>
<td>11 yo/12 yo</td>
<td></td>
</tr>
</tbody>
</table>
Fat Pad Sign or ‘Sail Sign’

Effusion is associated with a fracture 70-90% kids
Risk of occult fracture is approximately 30%-75%
Posterior or elevated anterior fat pad abnormal
8 yo M s/p FOOSH: Radial head dislocation and ulnar fracture
Supracondylar fracture
Supracondylar Fracture

Cardinal signs of supracondylar fracture are
1) a posterior fat pad sign
2) posterior displacement of capitellum relative to the anterior humeral line (94%)
Check Baumann angle in true AP view
*70% pediatric elbow fractures
Apophyseal Injuries

Apophysis: a growth plate that does not contribute to linear bone growth; serve as attachment sites for muscle-tendon units

Avulsion injuries: more common than muscle or tendon injuries due to skeletally immature apophysis
Secondary Ossification Centers of the Pelvis and Hip (Apophyses)

Anterior superior iliac spine - sartorius
Anterior inferior iliac spine - rectus femoris
Ischial tuberosity - hamstring, adductor magnus
Lesser trochanter - iliopsoas
Greater trochanter - gluteal muscles
Iliac crest - abdominal tensor fascia latae, gluteus medius, latissimus dorsi, gluteus maximus
Apophyseal Injuries (cont.)

Pelvis:
- most common type; peak incidence: 14-18 years;
- ischial tuberosity, anterior superior iliac spine (ASIS), and anterior inferior iliac spine (AIIS) are the most common sites

Tibial Eminence Avulsion Fracture:
- anterior cruciate ligament (ACL) insertion;
- peak incidence 8-14 years

Osgood Schlatter:
- traction apophysitis of the proximal tibial tuberosity at the insertion of the patellar tendon; common among adolescent males following a growth spurt

Sever Disease:
- calcaneal apophysitis at insertion of the Achilles’ tendon;
- common age is 9-11 years
Apophyseal Injuries (cont.)

Little League Elbow:
- medial epicondylar apophysitis secondary to repeated valgus stress from throwing;
- medial epicondyle has the longest exposure to medial distraction forces because it is the last ossification center to close.
- medial epicondylar avulsion fractures are the most common elbow injury during adolescence
Anterior Inferior Iliac Spine Apophyseal Avulsion Fracture

16 yo M elite soccer player
R hip pain x 2 weeks
‘Felt like I pulled my hip flexor’

*oblique views helpful
Case: 14 yo F w/ Hip Pain- Acute onset while kicking a ball: Anterior Superior Iliac Spine Apophyseal avulsion fracture
Osteochondritis Dessicans

Disorder in which a segment of articular cartilage, with its underlying subchondral bone, gradually separates from the surrounding osteocartilaginous tissue.

Common sites:
- Medial femoral condyle
- Superior surface of the talus
- Capitellum of the elbow
G.G. 14 yo M w/ subacute and chronic bilateral ankle pain x 2 years (OCD talus)
Case: M.T. 14 yo M w/ Chronic Knee Pain and Swelling (OCD knee)
OCD Elbow

Osteochondritis Dessicans (OCD) a.k.a. Osteochondral Defect

Type I- no displacement, no fracture of articular cartilage
 non weight bearing until radiographic healing and pain resolves

Type II- fracture of articular cartilage or partial displacement
 Rx controversial

Type III- complete detachment of lesion w/ loose body
 surgical drilling and curettage
Spondylolysis and Spondylolisthesis

Spondylolysis:
- Stress fracture
- Unilateral or bilateral defect (separation) in the vertebral pars interarticularis
- Evident on radiograph as a crack or ‘collar’ on the neck of the “scotty dog” (detects up to 30%)

Spondylolisthesis:
- Anterior slippage of the vertebral body resulting from bilateral defects
Spondylolysis

Prevalence of 4% to 6% in the general population
47% of young athletes sports clinic w/ Low Back Pain
Mechanism: repetitive pars overload in
extension and rotation +/- congenital factors
Pain increases w/ lumbar extension
Primarily involves lumbar vertebrae
~90% involve the L5 level
Case: M.D. 15 yo F Low Back Pain in an Adolescent Soccer Player x 2 months

No history of back problems.
Onset during soccer tryouts.
Pain is escalating.
Seen by ATC- diagnosis: ‘pulled muscle’
Seen by PCP diagnosis: ‘sacroileitis’
Xrays by PCP were ‘negative’
Exam: Pain with ROM spine, worse with extension.
CT scan confirms bilateral spondylolysis- L4
Case: L3 Bilateral Spondylolysis
Spondylolysis → listhesis

Risk factors for slip progression
1) spondylolisthesis > 20% to 30% at diagnosis
2) adolescence

4% to 30-50% are reported to progress to spondylolisthesis
Anterior Cruciate Ligament Injuries

ACL injuries are becoming more common as greater numbers of children and adolescents participate in community sports programs and more girls participate in collision sports, such as basketball and soccer.

100-200K ACL ruptures occur in the USA annually; average incidence is 1 in 3,500

Skiers and football player rupture the ACL most commonly; gymnasts sustain the highest rates of injury

Most common mechanism: hyperextension or valgus
Anterior Cruciate Ligament Injuries

ACL and gender

Female gymnasts, soccer players, and basketball players sustain significantly more ACL injuries than males (4-8X)

Quadriceps dominant deceleration
Increased valgus knee angulation with pivoting and deceleration

Estrogen

- effects upon strength and flexibility of soft tissues remains controversial

Discrepancies in Q angle and bone length
Decreased intercondylar notch width
Segond Fracture

Avulsion of the lateral capsular ligament
*pithognomonomic for ACL tear associated
Patellar Dislocations in Children are Associated with Osteochondral Fractures

Sunrise view abnormal in 7 (54%) of 13 cases that included a history of subluxation or dislocation

Intra-articular osteochondral fractures complicate approximately 5% of acute dislocations of the patella in children
Take Home Points

Be aware of injury mechanisms and injury patterns
A fracture can occur in the absence of trauma
Know where the physes are and ages of closure to help determine fractures radiographically
References

References (cont.)