

Chest Pain Wave I

Making the Most Out of an Observation Stay

American College of Emergency Physicians®

Presenters

Anwar Osborne, MD

Michael Granovsky, MD, CPC-CEDC

TCPi Transforming Clinical Practices Initiative

American College of Emergency Physicians[®]

Which patients need to stay in the hospital for chest pain evaluation?

Acute Coronary Syndromes

STEMI	NSTEMI	UA	CP NOS
Obviously Admit	Obviously Admit	???	

We talked about how higher sensitivity troponin has changed diagnosis of NSTEMI

We talked about who can probably be safely discharged (HEART Score).

An Observation Unit can help with this dilemma

Table 3. Diagnostic and predictive indices of the HEART score for predicting major adverse cardiac events or acute myocardial infarction (95% confidence intervals in parentheses).

Study	Outcome	N	Sensitivity	Specificity	NPV	PPV	Proportion low risk ^a	Outcome prevalence	Missed outcome ^a
Backus 2010	MACE within 6 weeks	880	98.1% (94.6–99.6)	41.6% (37.9–45.2)	99.0% (97.1–99.8)	26.9% (23.3–30.7)	32.5%	18.0%	1.0%
Fesmire	MACE within	2148	92.4%	48.5%	97.4%	23.9%	43.3%	14.7%	2.6%
2012	30 days		(88.9-95.1)	(47.2-51.8)	(96.2–98.3)	(21.5-26.4)			
Backus 2013	MACE within 6 weeks	2388	96.3% (94.0-97.9)	43.2% (41.0-45.4)	98.3% (97.2–99.0)	25.8% (23.6-28.1)	36.4%	17.0%	1.7%
Six 2013	MACE within 30 days	2906	96.3% (93.8–97.9)	31.8% (30.0–33.7)	98.3% (97.2–99.0)	17.3% (15.7–19.0)	28.2%	12.9%	1.7%
Melki 2013	MACE within 3 months	410	96.7% (82.8–99.9)	64.7% (59.7–69.6)	99.6% (97.8–100)	17.8%	60.2%	7.3%	0.4%
Marcoon 2013	MACE within 30 days	8252	75.5%	67.5% (66.5–68.6)	96.9% (96.4–97.4)	16.8%	64.1%	8.0%	3.1%
Visser 2014	MACE within 6 weeks	255	93.3%	44.4%	94.1% (86.8–98.1)	41.2%	33.3%	29.4%	5.9%
Leite 2015	MACE within 6 weeks	174		63.2% (55.0–70.8)	98.0% (92.8–99.8)	26.3%	56.3%	12.6%	2.0%
Bodapati 2016	MACE within 30 days	678	98.6%	43.5% (39.2–47.8)	99.2% (97.0–99.9)	31.6% (27.3–36.2)	34.7%	20.9%	0.9%
Sun 2016	MACE within 30 days	8255	85.8%	51.2%	98.2%	10.3%	48.9%	6.2%	1.8%
Santi 2016	MACE within 30 days	1378	100% (98.2–100)	43.7%	100%	23.8%	37.2%	15.0%	0.0%
Carlton 2015 (hs-cTnT)	(non)-fatal AMI within 30 days	959	93.7%	33.9%	98.3% (96.2–99.4)	11.3% (10.3–11.8)	31.6%	8.2%	1.7%
Carlton 2015 (hs-cTnl)	(non)-fatal AMI within 30 days	867	97.0%	34.7%	99.3% (97.3–99.9)	Ì0.9%	35.2%	7.6%	0.7%

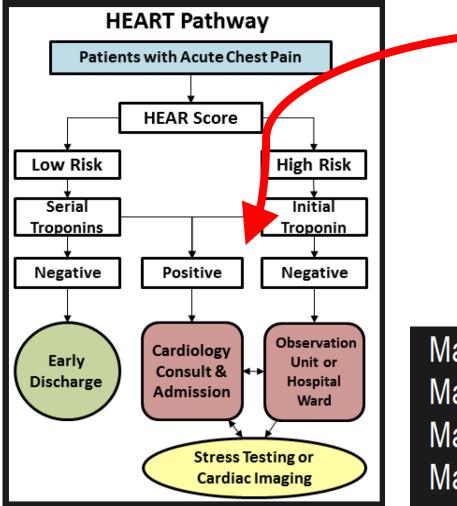
Review

The HEART score for early rule out of acute coronary syndromes in the emergency department: a systematic review and meta-analysis

European Heart Journal: Acute Cardiovascular Care I-9 © The European Society of Cardiology 2017 Reprints and permissions: sagepub.co.uk/journals/Permissions.nav DOI: 10.1171/204887261710788 journals.asgepub.com/home/acc SAGE

European Heart Journa

Cardiovag

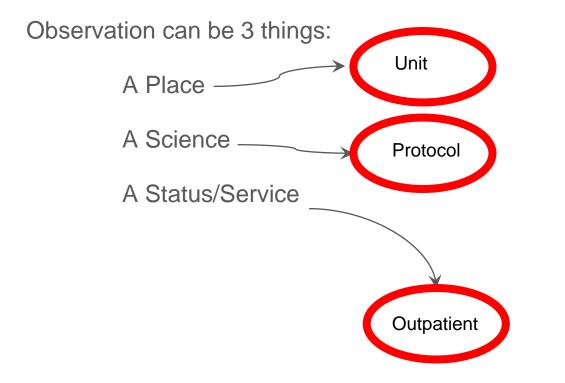

Patricia Van Den Berg¹ and Richard Body^{2,3}

Some people may not be comfortable with 1.7% MACE rate at 30 days

N: number of patients; NPV: negative predictive value; PPV: positive predictive value; MACEs: major adverse cardiac events; AMI: acute myocardial infarction; hs-cTnT: high-sensitivity cardiac troponin T; hs-cTnI: high-sensitivity cardiac troponin I. In patients with HEART score of 0–3.

Van Den Berg P, <u>Body R</u>. The HEART score for early rule out of acute coronary syndromes in the emergency department: a systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care. 2017 May 1:2048872617710788. doi: 10.1177/2048872617710788.

Who can go home? #alreadycovered



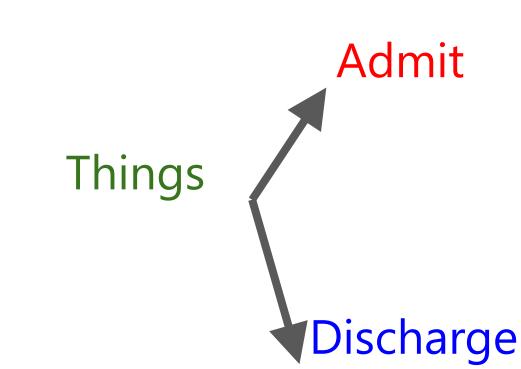
If this second troponin is positive OR if the HEART score is high risk, THIS IS WHERE OBSERVATION CAN HELP

You can fix this issue by using the HEART Pathway (Mahler previously discussed) and add on second troponin.

Mahler et. al, Crit Path Cardiol, 2011 Mahler et. al, Int J Cardiol, 2013 Mahler et al, Circ CVQO J, 2015. Mahler et al, JMIR, 2016

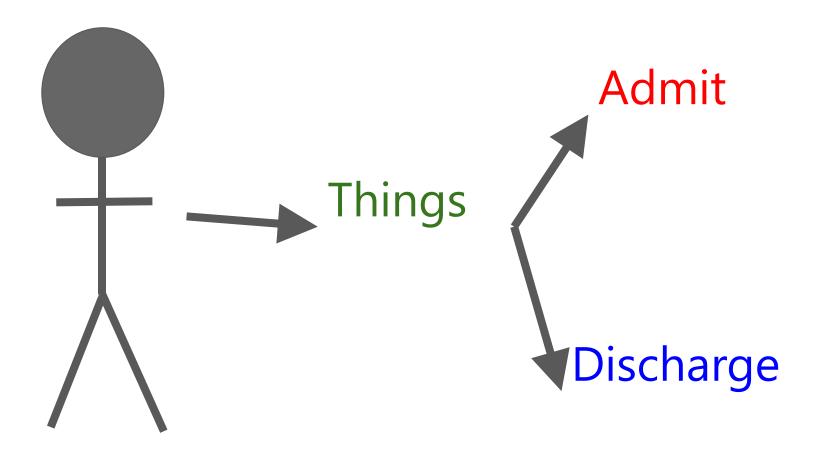
What is Observation?

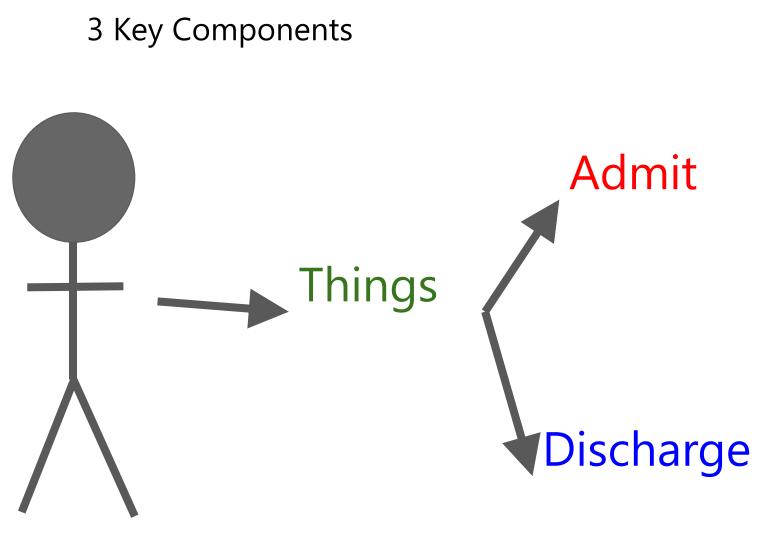
Can Occur in Different Settions
Type 1 - Protocol #1 a dedicated obs c. #1
Type 2 - Discretionary care in a dedicated obs unit
Type 3 - Protocol-driven in any bed in the hospital
Type 4 - Discretionary care in any bed in the hospital


Observatio

Observation services premises, including u other staff, which are outpatient's condition <u>as an inpatient</u>...

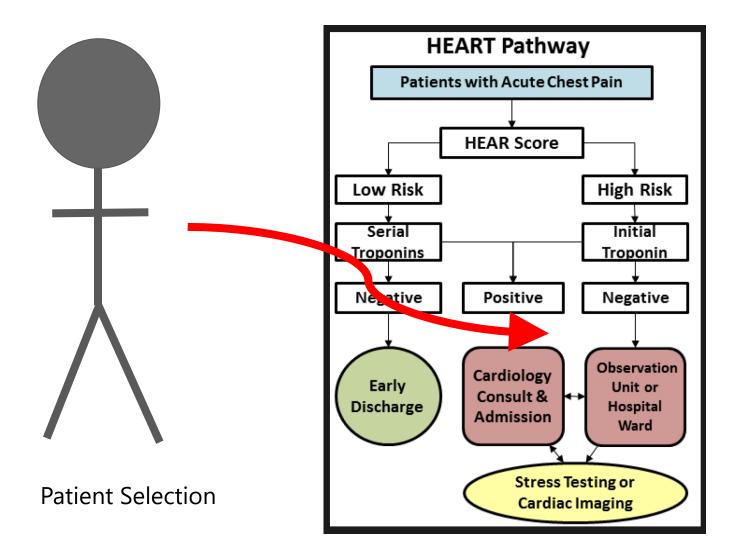
Medicare: Hospital M

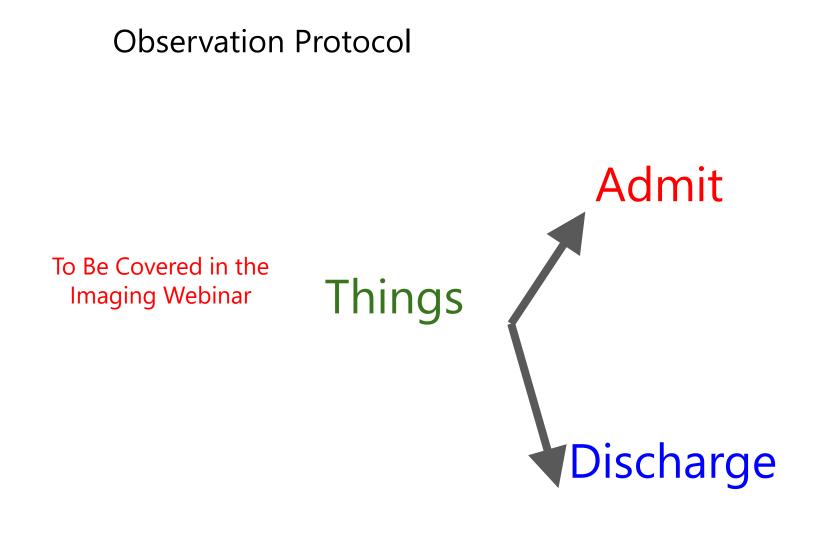



n a hospital's toring by nursing or evaluate an <u>possible admission</u>

Observation Services are....

Observation Protocol




Patient Selection

Interventions

Decision Criteria

Observation Protocol for Chest Pain

Interventions

Decision Criteria

Observation Protocol

Where can I find out about more protocols?

www.obsprotocols.org

Popz	L	Observa	abion	Observation Medicine Protocols Use Some, Upload Some, Shan		
80			Protocols			
enu Iome		Chest Pain		N		
Gearch Categories Viki F		Chest Pain is the most well studied of any EDOU obs protocol.				
Articles	ĺ	Table of contents				
		Chest Pain Inclusion Criteria Exclusion Criteria Potential Interventions Discharge Criteria				

Inclusion Criteria

• ACS risk is low based on Reilly-Goldman 🖉 criteria

Home Admit

- · Chest discomfort is potentially due to cardiac ischemia
- No acute ECG changes of ACS, negative initial troponin (<0.04 or <0.15 if very low suspicion of ACS)
- · Acceptable vital signs

Exclusion Criteria

- Moderate to high risk criteria by Reilly / Goldman criteria (Pain worse than usual angina or like prior MI, recent *revascularization, SBP<10, rales above both bases).
- New ECG changes consistent with ischemia
- · Positive troponin (>0.15) not known to be chronic
- · Stress test or cardiac imaging needed but NOT available while in the CDU
- · Chest pain is clearly not cardiac ischemia
- · Recent normal cardiac catheterization (no coronary stenosis)
- · Private attending chooses hospital admission

Potential Interventions

- Continue saline lock, O2, cardiac and ST segment monitor, nitrates prn, daily aspirin, and NO CAFFIENE if
 persantine is planned, NPO six hours before stress test.
- · Serial Troponin I and ECGs at 2 and 6 hour from first ED blood draw
- · No 6-hour level needed if negative provocative test done after 2hr draw
- · 6 hour lab needed if positive "delta" (normal, but >50% rise) between 1st two labs
- · Repeat EKG based on symptoms or ST monitor alert show to CDU physician STAT
- · Stress testing and cardiac Imaging if initial and 2 hour and "delta" markers are negative

Discharge Criteria

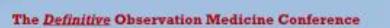
Home

· Acceptable VS, stable symptoms, no serious cause of symptoms identified

- Normal serial cardiac markers and EKGs
- Negative provocative test or cardiac imaging for ACS no ischemic or reversible defects identified.

Admit

Inclusion and Exclusion Criteria


Interventions

Discharge Criteria

BSERVATION MEDICINE -Science and Solutions Conference

SEPTEMBER 14-15, 2017

NASHMILLE, TEND

- Hear from and network with top Observation Medicine leaders & authors
- Learn about why your hospital needs an Observation Unit & which Observation Unit design is best for you
- New this year! Day 2 will include two tracks: <u>Beginners</u>: Starting an Observation Unit & <u>Advanced</u>: Optimizing & Growing your Observation Unit

Please visit www.mcep.org for further information.

Observation Units can be managed by ED physicians

Multiple Provider Models Exist

Pros

One Physician

ED Physician rounds at beginning of shift with APP who is stationed in unit completing care

Requires APP Physician time 8-10 min/pt Cons

Two Physician

Distinct group of physicians rounds on patients

May or may not use APP Physician time 40-50 min/pt without APP

May bill under separate Medicare ID

Observation Units can be managed by the ED

Workflow notes

Nursing Ratio is typically 4:1 and usually there's 1 PCA at 8 pts Often the unit has a patient nadir in the midday and these beds can be flexed for a multitude of other functions (like holds or short stay procedures)

Rounds should occur early and there should be some follow up rounds before 5pm

Yes! It works and is in scope

Original Contribution

Effect on efficiency and cost-effectiveness when an observation unit is managed as a closed unit vs an open unit

Margarita E. Pena MD $^{a,\#}$, James M. Fox MD a, Anthony C. Southall MD a, Robert B. Dunne MD a, Susan Szpunar PhD b, Stephen Kler c , Robert B. Takla MD a

* Sc. John Hospital and Medicai Center, Dept. of Emergency Medicine, Detroit MI and Wayne State University School of Medicine, Detroit MI * Sc. John Hospital and Medicai Center, Dept. of Medical Education, Detroit MI Sc. Sc. John Hospital and Medicai Center, Dept. of Emergency Medicine, Detroit MI

American Journal of Emergency Medicine 31 (2013) 1042-1046

Table 1

Patient level encounter data and boarder hours data for all 3 periods

Characteristic	Period 1	Period 2	Period 3	P or 95% CI of difference in means
Mean ED volume/month	8088.6±348.1	8729±681.7	9561.4±522.7	1 vs 2: -1251.4 to -29.6
				1 vs 3: -2083.7, -861.9
				2 vs 3: -1443.2, - 221.4
Mean OU volume/month	576.2 ± 32.9	620.1 ± 66.7	758.0 ± 34.2	1 vs 2: -97.9,10.1
				1 vs 3: -235.8 to -127.9
				2 vs 3: -191.9 to -84.0
Mean % of ED volume	7.1%	7.1%	7.9%	1 vs 3, 2 vs 3, <i>P</i> < .0001
Mean LOS (hours) discharged patients	27.3 ± 1.7	17.3 ± 1.3	16.9 ± 0.4	1 vs 2: -11.4 to -8.6
	*27.239 (26.172–27.961)	17.065 (16.492–17.644)	17.000 (16.475–17.325)	1 vs 3: −11.8 to −9.0
				2 vs 3: -1.8,1.04
Mean LOS (hours) admitted patients	20.7 ± 2.2	16.5 ± 3.0	15.0 ± 0.44	1 vs 2: -6.6 to -1.7
	19.928 (19.470–21.413)	15.804 (14.261–19.576)	14.950 (14.775–15.150)	1 vs 3: -8.1 to -3.1
				2 vs 3: -3.9,1.01
Admission rate from the OU	32.5%	21.6%	19.6%	All comparisons, <i>P</i> < .001
30-day all cause admission rate post-OU discharge	11.6%	7.7%	7.9%	1 vs 2, 1 vs 3, <i>P</i> < .0001
Boarder hours	246.5 ± 54.6	199.3 ± 41.0	99.2±25.0	1 vs 2: -95.11,0.71
	235.0 (IQR 212-268)	205.5 (189.50-223.25)	102.5 (74.50-123.75)	1 vs 3: -195.2 to -99.4
	,	. ,	. ,	2 vs 3: -148.0 to -52.2

* Median with calculated interquartile range in parenthesis.

REVIEW ARTICLE

State of the Art: Emergency Department Observation Units

Michael A. Ross, MD,* Taruna Aurora, MD,† Louis Graff, MD,‡ Pawan Suri, MD,† Rachel O'Malley, MD,§ Aderonke Ojo, MD,¶ Steve Bohan, MDI, and Carol Clark, MD**

Condition / Year / Author	<u>N</u>	Primary Outcome
<i>1. Syncope</i> / 14 / Sun *	124	\downarrow admissions and LOS
<i>2. Chest Pain</i> / 10 / Miller *	110	\downarrow Cost (stress MRI)
<i>3. Atrial Fib</i> / 08 / Decker	153	个 conversion to sinus
4. TIA / 07 / Ross	149	\downarrow LOS and cost
<i>5. Syncope</i> / 04 / Shen	103	\uparrow established diagnosis, \downarrow admissions
<i>6. Asthma</i> / 97 / McDermot	222	\downarrow admissions, no relapse \uparrow
7. Chest Pain / 98 / Farkouh	424	No difference cardiac events
8. Chest Pain / 97 / Roberts	165	\downarrow LOS and cost
<i>9. Chest Pain</i> / 96 / Gomez	100	↓ LOS and cost (<i>Crit Pathways in Cardiol</i> 2012;11: 128–138) *Added since published after this review

2017 Summer Equal Chest Pain Webinar

Michael Granovsky MD, CPC, FACEP President, LogixHealth

Requirements to Report Observation Services

General Documentation Requirements

- Timed/dated order to place in observation status
- A treatment plan regarding the goals of observation
- Clinically appropriate progress notes
 - Asthma different than chest pain
- A discharge summary reviewing the course in observation, findings, and plan

Coding Construct and Documentation Requirements

Professional Observation CPT Codes

- Same day admit and discharge CPT Codes:
- **99234** <u>Low</u> severity
 - Low-complexity MDM
- 99235 Moderate severity
 - Moderate-complexity MDM
- **99236** <u>High</u> severity
 - High-complexity MDM

I	11	1	J	J	J	
	D	a	Ŋ	1	/	

CMS 8 Hour Rule

 Medicare requires 8 hours of Obs. on the same calendar date to report 99234-99236

RAC Issue A00010002013*:

Issue Number	Issue Name	Type of Review	Provider Type	State(s) Impacted	Date Posted	Details
A000262015	Observation Care for Fewer Than 8 Hours - JL	Automated	Physician/Non- physician Practitioner	DC, DE, MD, NJ, PA	9/3/2015	Details

Professional Observation CPT Codes

- Admit and discharge more than one calendar day:
- Initial day CPT codes:
 - **99218** <u>Low</u> severity
 - Low-complexity MDM
 - 99219 <u>Moderate</u> severity
 - Moderate-complexity MDM
 - **99220** <u>High</u> severity
 - High-complexity MDM

(J	I	J	I	I	I	I	
			-					
		Г	⊿);	a	V	S		
6					1	-	/	

Professional Observation CPT Codes

Discharge day CPT Code:

- 99217- Discharge Day
- Includes final exam, discussion of observation stay, follow-up instructions, and documentation
- Used with codes from the initial observation day codes series (99218/99219/99220)

Coding Scenarios Observation Services

Observation Level of Care	Care All on the Same Day	Care Covers Two Calendar Days
1	99234	99218 + 99217
2	99235	99219 + 99217
3	99236	99220 + 99217

Physician Documentation Requirements

- All but the lowest level Obs require very significant Hx and PE documentation
- Comprehensive Hx and PE: 99219/99220 & 99235/99236
 - HPI: 4 elements
 - PFSHx: 3 areas* (Family Hx)
 - ROS: 10 systems
 - PE: 8 organ systems
- Beware overuse of macros for ROS and PE

2017 RVU Values for Observation Services

Same Day Obs	Total RVU	Over Midnight Obs	Total RVU	ED E/M Service	Total RVU
99234	3.77	99217	2.06	99284	3.32
99235	4.78	99218	2.82	99285	4.90
99236	6.16	99219	3.84		
		99220	5.25		

99217 + 99220 = 7.31 RVUs Total

Observation Unit Staffing

- 10 bed unit...turned 1.3 times daily
 - Blend of moderate and high5.7 RVUs per case
 - 74 RVUs....\$36/RVU....\$2,700 daily = \$112/hr
 - Cost: salary, benefits, overhead...?tough to cover costs

Staffing Solutions

- MD coverage in the morning and evening
 - New admits and discharges
 - 10hrs X \$150 = \$1500
- PA/NP interim coverage
 - 12hrs X \$70 = \$840

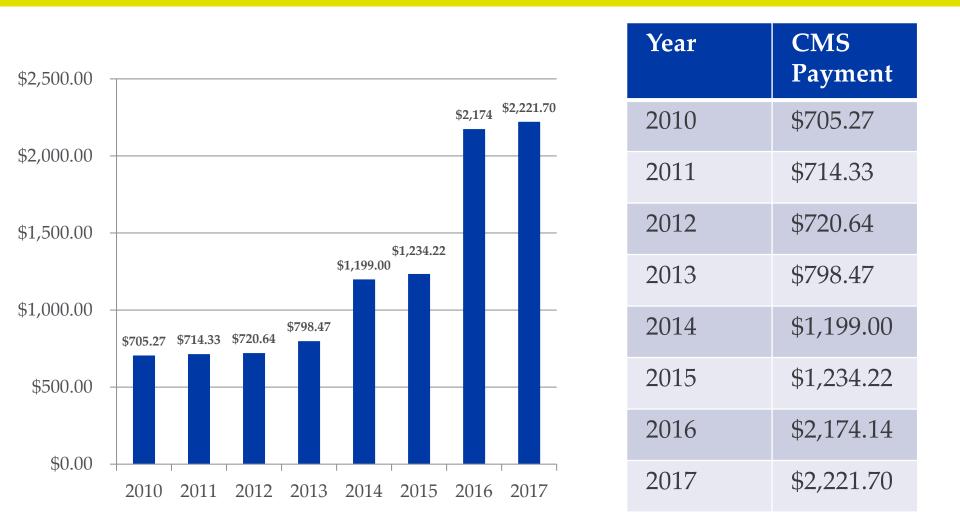
Observation Status and Patient Financial Impact

Patient Financial Considerations

- Obs is an outpatient service covered under Medicare part B
- Concerned beneficiaries may pay more as outpatients than if they were admitted as inpatients
 - 80/20 co-insurance under part B
- If not inpatient then responsible for SNF charges
 - In OIG study, 11% of Obs was > 3 days
- Self administered (P.O.) medications not covered

Patient Financial Detail

- 20% co pays add up for longer complex Obs stays
 - Inpatient expense: Part A inpatient deductible \$1,288
- SNF
 - Obs stay...no qualifying SNF Medicare coverage
 - Patient may be entirely responsible \$5,000
 - Typical stay starts at roughly \$250 per day
 - Qualifying inpatient stay spanning 3 nights
 - No patient SNF cost sharing for first 20 days
 - After 20 days co-payment is \$145 per day
- Self administered meds- "uncovered service" gross hospital charges are in play (average bill \$528)



SERVICE	INPATIENT	OBSERVATION
Facility Fees	Patient pays Part A deductible: \$1,288	Patient pays 20% of C-APC 8011: \$434.83
	Medicare Part A pays Diagnosis Related Group (DRG) 312: \$4,101* (pre deductible \$2,813)	Medicare Part B pays 80% of C-APC 8011: \$1,739.31
Professional Fees	Patient pays 20% of fees: \$110.21 Medicare Part B pays 80%: \$440.83	Patient pays 20% of fees: \$78.82 Medicare Part B pays 80%: \$315.29
 Initial evaluation 	CPT 99223: \$204.22	CPT 99220: \$187.02
 Subsequent evaluation 	CPT 99233: \$104.98	-
 Discharge evaluation 	CPT 99239: \$108.20	CPT 99217: \$73.45
 Computed tomography (CT) interpretation 	HCPCS 70450: \$43.35	HCPCS 70450: \$43.35
 Echocardiogram (ECG) interpretation 	HCPCS 93306: \$64.49	HCPCS 93306: \$64.49
• ECG interpretation x3	CPT 93010: \$8.60 x3 (\$25.80)	CPT 93010: \$8.60 x3 (\$25.80)
Medications	Patient pays \$0 Medicare Part A pays DRG payment	Patient pays entire cost: \$127** Medicare Part B pays \$0
Laboratory	Patient pays \$0 Medicare Part A pays DRG payment	Patient pays \$0 Medicare Part B pays C-APC payment
Facility Diagnostics Cardiac monitoring x48 hours 	Patient pays \$0	Patient pays \$0
 CT of the brain Trans-thoracic echocardiogram ECG x3 	Medicare Part A pays DRG payment	Medicare Part B pays C-APC payment
Total Payments:	Patient: \$1,398.21 Medicare Part A: \$2,813 Medicare Part B: \$440.83	Patient: \$640.65 Medicare Part A: \$0 Medicare Part B: \$2,054.60
Total Revenue:	Hospital: \$4,101 Professional: \$551.04	Hospital: \$2,301.14 <u>Profession</u> al: \$394.11
TOTAL COST:	\$4,652.04	\$2,695.25

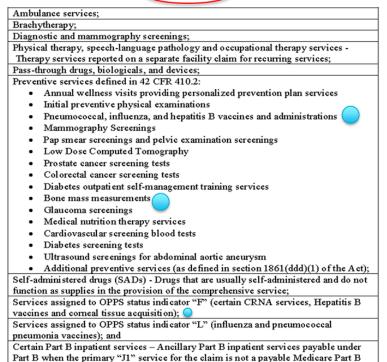
ACEP Now: Baugh, Granovsky March 16, 2016

Observation Facility Payment

2017 Observation Facility Payment

Observation Big Hospital Payments in 2017 What's the Catch?

Comprehensive APC


 Bundling: Most Labs, ancillaries, radiology, procedures...

Observation Now A Mini DRG

What's Included? Everything! Labs, CT, US, most procedures, IVF, Meds Except (S.I. F,G,H,L,U)

TABLE 7.—COMPREHENSIVE APC PAYMENT POLICY EXCLUSIONS FOR CY 2016

inpatient service (for example, exhausted Medicare Part A benefits, beneficiaries with

Part B only)

Conclusions

- Observation services will be an expanding determinant of our success in bringing value to health care delivery
- Documentation requirements are meaningful and require provider education
- Patient financial responsibility is frequently less than if they are an inpatient
- Under the comprehensive APC process the facility receives a single bundled payment for Observation

Contact Information

Michael Granovsky, MD, CPC, FACEP

mgranovsky@logixhealth.com

www.logixhealth.com

Questions? Contact the E-QUAL team at equal@acep.org

American College of Emergency Physicians[®]