ABSTRACT

This clinical policy from the American College of Emergency Physicians is the revision of a clinical policy approved in 2015 addressing a critical question regarding the use of thrombolytics for the management of acute ischemic stroke. A writing committee conducted a systematic review of the literature to derive evidence-based recommendations to answer the following clinical question: In adult stroke patients who are a candidate for mechanical thrombectomy, is the use of IV thrombolysis prior to mechanical thrombectomy (Bridge therapy) beneficial and safe versus mechanical thrombectomy alone? Evidence was graded, and recommendations were made based on the strength of the available data.

INTRODUCTION

Approximately 30% of all acute ischemic strokes have a large vessel occlusion (LVO), which contributes to 64% of all moderate to severe disability from stroke at 3 months and over 95% of stroke deaths at 6 months. Over the past decade, acute treatment for LVO has expanded beyond thrombolytics with evidence supporting the use of endovascular therapy (EVT) such as mechanical thrombectomy. For patients who are eligible for both interventions, this has led to recent debate on the use of intravenous thrombolysis (IVT) prior to EVT in patients with an LVO. On one hand, the use of IVT may contribute to early reperfusion from an LVO and resolve residual distal thrombi after EVT. However, IVT alone has low recanalization rates in patients with an LVO, especially with proximal lesions, and may fragment and cause distal embolization making EVT less effective. IVT may also increase the risk of symptomatic intracranial hemorrhage (sICH) and delay EVT, although the outcomes of such delays in patients receiving both interventions is unclear.

Another challenge in determining the optimal treatment paradigm is the availability of EVT. Although approximately 90% of patients in the United States have access to a stroke center within 60 minutes, most lack timely access to an EVT-capable center, with only around 20% residing within a 15-minute and 50% within a 60-minute radius to a stroke center equipped for EVT. This may lead to varying treatment strategies for patients with an LVO: individuals who initially present to a facility without EVT capabilities and require transfer, and those who directly present to an EVT-capable facility.
Studies that compared EVT alone (direct endovascular therapy or direct mechanical thrombectomy) with IVT + EVT (bridging therapy) used the Modified Rankin Scale (mRS) to assess functional outcomes. The mRS ranges from 0 (no neurological symptoms) to 6 (death). Good functional outcome or functional independence is often defined as mRS 0 to 2, which represents patients with slight disability but who can look after their own affairs without assistance. Excellent functional outcome is usually defined as mRS of 0 to 1, which represents no significant disability and the ability to carry out all duties and activities. Although the mRS is the most common tool used for evaluating disability in stroke research, there are known limitations with inter-rater reliability.

Recently, an international survey showed that 63% of stroke physicians consisting of neurologists, interventionalists, and neurosurgeons would still give IVT prior to EVT. However published consensus from experts have been conflicting whether to support IVT prior to EVT due to differing interpretations of the data. This systematic review will evaluate outcomes for patients who present with an acute stroke from an LVO and received EVT with or without IVT.

METHODOLOGY

This ACEP clinical policy was developed by emergency physicians with input from medical librarians and a patient safety advocate and is based on a systematic review and critical descriptive analysis of the medical literature and is reported in accordance with Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines.

Search and Study Selection

This clinical policy is based on a systematic review with critical analysis of the medical literature meeting the inclusion criteria. Searches of PubMed, SCOPUS, Embase, Web of Science, and the Cochrane Database of Systematic Reviews were performed by a second librarian. Search terms and strategies were peer reviewed by a second librarian. All searches were limited to human studies published in English. Specific key words/phrases, years used in the searches, dates of searches, and study selection are identified under each critical question. In addition, relevant articles from the bibliographies of included studies and more recent articles identified by committee members and reviewers were included.
Using Covidence (Covidence), 2 subcommittee members independently reviewed the identified abstracts to assess for possible inclusion. Of those identified for potential inclusion, each full-length text was reviewed for eligibility. Those identified as eligible were subsequently abstracted and forwarded to the committee’s methodology group (emergency physicians with specific research methodological expertise) for methodological grading using a Class of Evidence framework (Appendix E1).

Assessment of Risk of Bias and Determination of Classes of Evidence

Each study identified as eligible by the subcommittee was independently graded by 2 methodologists. Design 1 represents the strongest possible study design to answer the critical question, which relates to whether the focus was therapeutic, diagnostic, or prognostic, or a meta-analysis. Subsequent design types (ie, Design 2 and Design 3) represent respectively weaker study designs. Articles are then graded on dimensions related to the study’s methodological features and execution, including but not limited to randomization processes, masking, allocation concealment, methods of data collection, outcome measures and their assessment, selection and misclassification biases, sample size, generalizability, data management, analyses, congruence of results and conclusions, and potential for conflicts of interest.

Using a predetermined process that combines the study’s design, methodological quality, and applicability to the critical question, 2 methodologists independently assigned a preliminary Class of Evidence grade for each article. Articles with concordant grades from both methodologists received that grade as their final grade. Any discordance in the preliminary grades was adjudicated through discussion which involved at least 1 additional methodologist, resulting in a final Class of Evidence assignment (i.e., Class I, Class II, Class III, or Class X) (Appendix E2). Studies identified with significant methodologic limitations and/or ultimately determined to not be applicable to the critical question received a Class of Evidence grade “X” and were not used in formulating recommendations for this policy. However, content in these articles may have been used to formulate the background and to inform expert consensus in the absence of evidence. Classes of Evidence grading may be found in the Evidentiary Table included at the end of this policy.

Translation of Classes of Evidence to Recommendation Levels
Based on the strength of evidence for each critical question, the subcommittee drafted the recommendations and supporting text synthesizing the evidence using the following guidelines:

Level A recommendations. Generally accepted principles for patient care that reflect a high degree of scientific certainty (e.g., based on evidence from one or more Class of Evidence I, or multiple Class of Evidence II studies that demonstrate consistent effects or estimates).

Level B recommendations. Recommendations for patient care that may identify a particular strategy or range of strategies that reflect moderate scientific certainty (e.g., based on evidence from one or more Class of Evidence II studies, or multiple Class of Evidence III studies that demonstrate consistent effects or estimates).

Level C recommendations. Recommendations for patient care that are based on evidence from Class of Evidence III studies or, in the absence of adequate published literature, based on expert consensus. In instances where consensus recommendations are made, “consensus” is placed in parentheses at the end of the recommendation.

There are certain circumstances in which the recommendations stemming from a body of evidence should not be rated as highly as the individual studies on which they are based. Factors such as consistency of results, uncertainty of effect magnitude, and publication bias, among others, might lead to a downgrading of recommendations. When possible, clinically-oriented statistics (e.g., likelihood ratios [LRs], number needed to treat) are presented to help the reader better understand how the results may be applied to the individual patient. This can assist the clinician in applying the recommendations to most patients but allow adjustment when applying to patients with extremes of risk (Appendix E3).

Evaluation and Review of Recommendations

Once drafted, the policy was distributed for internal review (by members of the entire committee) followed by external expert review and an open comment period for all ACEP membership. Comments were received during a 60-day open comment period with notices of the comment period sent electronically to ACEP members, published in *EM Today*, posted on the ACEP Web site, and sent to other pertinent physician organizations. The responses were used to further refine and enhance this clinical policy, although responses do not imply endorsement. Clinical
policies are scheduled for revision every 3 years; however, interim reviews are conducted when technology, methodology, or the practice environment changes significantly.

Application of the Policy

This policy is not intended to be a complete manual on the use of thrombolytics for the management of acute ischemic stroke but rather a focused examination of critical questions that have particular relevance to the current practice of emergency medicine. Potential benefits and harms of implementing recommendations are briefly summarized within each critical question.

It is the goal of the Clinical Policies Committee to provide evidence-based recommendations when the scientific literature provides sufficient quality information to inform recommendations for a critical question. In accordance with ACEP Resolution 56(21), ACEP clinical policies do not use race-based calculators in the formulation of the recommendations. When the medical literature does not contain adequate empirical data to inform a critical question, the members of the Clinical Policies Committee believe that it is equally important to alert emergency physicians to this fact.

This clinical policy is not intended to represent a legal standard of care for emergency physicians. Recommendations offered in this policy are not intended to represent the only diagnostic or management options available to the emergency physician. ACEP recognizes the importance of the individual physician’s judgment and patient preferences. This guideline provides clinical strategies for which medical literature exists to inform the critical questions addressed in this policy. ACEP funded this clinical policy.

Scope of Application. This guideline is intended for physicians working in EDs.

Inclusion Criteria. This guideline is intended for adult patients aged 18 years and older presenting to the ED with acute ischemic stroke.

Exclusion Criteria. This guideline is not intended to be used for pediatric or pregnant patients.

CRITICAL QUESTION

In adult stroke patients who are a candidate for mechanical thrombectomy, is the use of IV thrombolysis prior to mechanical thrombectomy (Bridge therapy) beneficial and safe versus mechanical thrombectomy alone?
Patient Management Recommendations

Level A recommendations.

Level B recommendations. In stroke patients who are candidates for both mechanical thrombectomy and IV thrombolysis*, IV thrombolysis should be offered and may be given prior to mechanical thrombectomy.

*IV thrombolysis given within 4.5 hours from symptom onset

Level C recommendations. When feasible, shared decision-making between the patient (and/or their surrogate) and a member of the health care team should include a discussion of potential benefits and harms prior to the decision whether to administer IV thrombolytics (Consensus recommendation).

Potential Benefit of Implementing the Recommendations:

● Improved functional outcomes
● Decreased mortality

Potential Harm of Implementing the Recommendations:

● Delays in endovascular therapy
● Increased cost with the use of thrombolytics

Key words/phrases for literature searches: Acute Ischemic Stroke, Acute Stroke, Alteplase, Anticoagulation Bridge, Brain Ischemia, Bridge Therapy, Bridging Anticoagulation, Catheter-directed Thrombectomy, Cerebrovascular Accident, Directed, Thrombectomy, Elaxim, Emergency Department, Emergency Health Service, Emergency Medical Services, Emergency Medicine, Emergency Treatment, Emergency Ward, EMS, Endovascular Therapy, Endovascular Thrombectomy, EVT, Fibrinolytic, Fibrinolytic Agents, Guided Thrombectomy, Intravenous, Intravenous Drug Administration, Ischemic Stroke, IV, Mechanical Thrombectomy, Metalyse, Percutaneous Thrombectomy, rTPA, Stroke, Tenecteplase, Thrombectomy, Thrombolytic Therapy, Thrombolytic Treatment, Thrombolytic, Tissue Plasminogen Activator, TNKase, tPA, and variations and combinations of key words/phrases. Searches included January 2015 to search the date of April 10, 2023 (Appendix E4).

Study Selection: Five hundred fifty-seven articles were identified in the searches. Three hundred thirty-four articles were selected from the search results as candidates for further review. After grading for methodological rigor, 3 Class I studies, 7 Class II studies, and 8 Class III studies were included for this critical question (Appendix E5). Appendix E6 lists the 69 articles graded for methodological rigor but ultimately found to be fatally flawed.

Randomized Controlled Trials

Six randomized controlled trials (RCTs) were included: 1 Class I study, 4 Class II studies,21-25 and 1 Class III study.26 All included RCTs were open-labeled with masked assessment of outcomes and included only adult patients who presented within 4.5 hours of symptom onset without contraindications for thrombolytics. Alteplase
at 0.9 mg/kg was used in all studies except in studies where it was noted that either a different alteplase dose was given or tenecteplase was used.

All the RCTs were designed primarily to evaluate if EVT alone was non-inferior to IVT + EVT except for 1 trial (LeCouffe 2021) that evaluated superiority of EVT alone followed by non-inferiority of EVT alone. As opposed to superiority studies which are designed to demonstrate better effectiveness of 1 intervention over another, non-inferiority studies are powered to evaluate whether 1 intervention is potentially “less good” than another intervention within a predefined range. Non-inferiority trials are appropriate if 1 intervention has added costs, risks, or limited availability that might render superiority less important. Since intention-to-treat analysis is more likely to create Type 1 error by falsely concluding non-inferiority compared with per-protocol analysis, dual reporting of both analyses are preferable for non-inferiority trials. To achieve non-inferiority, the lower limit of the confidence interval (CI) should exceed the prespecified non-inferiority margin. Each of the non-inferiority RCT trials in this clinical policy used different primary end points as well as various non-inferiority margins. Both per-protocol and intention-to-treat analysis were performed and remained consistent within each study and is summarized in Table 1.

In a Class I study, the DIRECT-MT trial enrolled 654 patients from 41 academic tertiary care centers in China with an internal carotid artery (ICA) or first segment middle cerebral artery (M1)/second segment middle cerebral artery (M2) LVO. The primary outcome was a median 90-day mRS. Both EVT alone and IVT + EVT had similar 90-day mRS (3 versus 3). The adjusted odds ratio (OR) for the mRS was 1.08 (95% CI 0.82 to 1.43). These results demonstrate non-inferiority as the lower limit margin was set at 0.80. There was no statistical difference in sICH or death at 90 days observed between the 2 groups.

The DEVT trial was a Class II study that enrolled 234 patients with an ICA or M1 LVO from 33 stroke centers in China. The primary outcome was the proportion of patients achieving mRS 0 to 2 at 90 days. Results from the per-protocol analysis showed an mRS 0 to 2 in 53.2% of the EVT alone group versus 46% of the IVT + EVT group. The absolute difference of 7.1% (97.5% CI −5.9 to ∞) allowed them to conclude non-inferiority based upon their pre-specified margin of 10%. The DEVT trial was stopped early after enrolling only 235 out of the planned 970 patients because of a statistical finding of likely futility. Both groups had similar rates of sICH and death at 90 days with no statistical differences observed.
In a Class II study, the SKIP trial enrolled 204 patients from 23 stroke centers in Japan with an ICA or M1 LVO.25 Whereas 0.9 mg/kg of alteplase was used in other trials, this trial used 0.6 mg/kg of alteplase. The primary outcome was mRS 0 to 2. Results from the per-protocol analysis showed a favorable neurologic outcome in 60.8% of the EVT alone group versus 58.8% of the IVT + EVT group and an OR of 1.06 (1-sided 97.5% CI 0.60 to ∞), which did not meet the prespecified lower margin of 0.74. The investigators were unable to conclude non-inferiority. Mortality at 90 days and sICH were not observed to be statistically different between the 2 groups.

The MR CLEAN-NO IV trial was a Class II study that included 539 patients from 20 hospitals in the Netherlands, Belgium, and France.22 Patients had an acute ischemic stroke due to a proximal occlusion of the anterior circulation. The primary outcome was median mRS at 90 days, first evaluating for superiority of EVT alone over IVT + EVT. If superiority was not established, then an evaluation of non-inferiority of EVT alone compared with IVT + EVT was performed. The non-inferiority margin was set at 0.8 for the adjusted common OR. Median mRS favored IVT + EVT over EVT alone (2 versus 3). Results from the adjusted common OR was 0.84 (95% CI 0.62 to 1.15), which demonstrated neither superiority nor non-inferiority for EVT alone. No statistical difference was observed between the 2 groups for sICH or death within 90 days.

The SWIFT DIRECT was a Class II trial that enrolled 408 patients with anterior strokes from 48 EVT-capable centers in Europe and Canada.23 The primary outcome was mRS 0 to 2 at 90 days. Results from the per-protocol analysis showed favorable neurologic outcomes in 57% of the EVT alone group versus 64% of the IVT + EVT group. Absolute risk difference was -4.6% (95% CI -14.8 to 5.8%), with the lower limit of 1-sided 95% CI of -13.2%. The lower limit exceeded the prespecified 12% and non-inferiority of EVT alone could not be concluded in the overall study population or in any of the pre-specified subgroups. There was no statistical difference in sICH or mortality by 90 days between both groups.

In a Class III study, the DIRECTSAFE trial enrolled 295 patients from 25 acute-care hospitals in Australia, New Zealand, China, and Vietnam.26 Patients needed to have an LVO in either the ICA, M1 or M2 segments of the middle cerebral artery (MCA), or basilar artery and were randomized with or without alteplase in Asian countries (83%) and tenecteplase in non-Asian countries (17%). The primary outcome was mRS 0 to 2 at 90 days. Results from the per-protocol analysis showed a favorable neurologic outcome in 54% of the EVT alone
Of the 6 RCTs, 4 did not show non-inferiority of EVT alone compared with IVT + EVT, thus supporting the use of IVT in this patient population.22,23,25,26 In all RCT studies, sICH and death was not statistically significant between the 2 groups, although the studies were not all powered for safety.21-26

Table 1. A synthesis of the ACEP Clinical Policy Level of Evidence, direction of support for bridging therapy (BT), original investigator’s non-inferiority (NI) margin, and Per Protocol and Intention to Treat analysis.

<table>
<thead>
<tr>
<th>RCT</th>
<th>Level of Evidence</th>
<th>Study Size</th>
<th>NI Margin</th>
<th>Per Protocol</th>
<th>Intention to Treat</th>
<th>Support BT?</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECT MT21</td>
<td>I</td>
<td>654</td>
<td>0.8</td>
<td>1.08 (95% CI 0.82 to 1.43)</td>
<td>1.07 (95% CI 0.81 to 1.40)</td>
<td>No</td>
</tr>
<tr>
<td>DEVT24</td>
<td>II</td>
<td>234</td>
<td>-10%</td>
<td>7.1% (97.5% CI -5.9 to 143)</td>
<td>7.7% (97.5% CI -5.1% to 10)</td>
<td>No</td>
</tr>
<tr>
<td>SKIP25</td>
<td>II</td>
<td>204</td>
<td>0.74</td>
<td>1.06 (97.5% CI 0.60 to 143)</td>
<td>1.09 (97.5% CI 0.63 to 143)</td>
<td>Yes</td>
</tr>
<tr>
<td>MR CLEAN NO IV22</td>
<td>II</td>
<td>539</td>
<td>0.8</td>
<td>0.84 (95% CI 0.61 to 1.16)</td>
<td>0.84 (95% CI 0.62 to 1.15)</td>
<td>Yes</td>
</tr>
<tr>
<td>SWIFT DIRECT23</td>
<td>II</td>
<td>408</td>
<td>-12%</td>
<td>-4.6% (95% CI -14.8 to 5.8%)</td>
<td>-7.3% (95% CI -16.6 to 2.1)</td>
<td>Yes</td>
</tr>
<tr>
<td>DIRECT SAFE26</td>
<td>III</td>
<td>295</td>
<td>-0.1</td>
<td>-0.062 (95% CI -0.173 to 0.049)</td>
<td>-0.051 (95% CI -0.160 to 0.059)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

A Adjusted common Odds Ratio
B Unadjusted difference
C Odds Ratio
D Adjusted Risk Difference
E Unadjusted Risk Difference

Systematic Reviews/Meta-Analysis

Six systematic reviews/meta-analysis (SRMA) were included in this guideline. Three SRMAs included RCTs only, which were included in this review.10,31,32 Two other SRMAs included both RCTs and observational studies, including studies that were eliminated during the critical appraisal (grading) process.33,34 Lastly, 1 SRMA
compared patients who were transferred from a primary stroke center (PSC) with IVT compared with patients who arrived at an EVT-capable center who did not receive IVT, but did not include any RCTs.35

In a Class I study, Kaesmacher et al. included 6 randomized clinical trials (DEVT, SKIP, DIRECT-MT, DIRECT-SAFE, SWIFT-DIRECT, and MR CLEAN NO IV)21-26 totaling 2,023 patients comparing EVT alone versus IVT + EVT for patients with anterior circulation LVO only.31 The primary outcome was time from symptom onset to expected administration of IVT plus thrombectomy versus thrombectomy alone with a minimal clinically important difference for the rate of mRS 0 to 2 of 1.3% at 90 days. There was a statistically significant interaction between time from symptoms onset to expected administration of IVT and the association of allocated treatment with functional outcomes (adjusted OR per 1-hour delay, 0.84; 95% CI 0.72 to 0.97). The benefit of IVT + EVT decreased with longer times from symptom onset to IVT administration and the benefit was not statistically significant after 2 hours 20 minutes.

In a Class II study, Lin et al. reviewed 4 RCTs (DEVT, SKIP, DIRECT-MT, and MR CLEAN NO IV)21,22,24,25 for a total of 1,633 patients.32 Based on the literature, they assessed 5 different non-inferiority margins for functional independence (mRS 0 to 2) at 90 days. There was no observed statistical heterogeneity among trials ($I^2=0\%$). Although the risk difference was 1\% (95\% CI −4\% to 5\%) favoring EVT alone, the lower margin of the 95\% CI suggests EVT alone is non-inferior to IVT + EVT except when using the most stringent of margins at −1.3\%. The outcome measure of mRS 0 to 1 showed a similar risk difference of 1\% (95\% CI −3\% to 5\%), showing non-inferiority except when using the margin of −1.3\%. SICH and mortality were not shown to be different between both groups.

In another Class II study, Wang et al. reviewed 6 RCTs (DEVT, SKIP, DIRECT-MT, DIRECT SAFE, SWIFT DIRECT, and MR CLEAN NO IV)21-26 for a total of 2,334 patients.10 This international workgroup consisted of various stakeholders including stroke experts, pharmacists, academics, and caregivers of stroke patients. The workgroup established minimally important differences through survey of their guideline panel and discussion for the following outcomes: 1\% for recovery with minimal disability (mRS 0 to 2), 0.8\% for mortality, and 1\% for sICH. Pooled estimate of effect showed lack of observed statistical heterogeneity ($I^2=0\%$). They concluded with low certainty of evidence that EVT alone had a smaller decrease in patients with minimal disability (risk ratio (RR) 0.97, 95\% CI 0.89 to 1.05; risk difference −1.5\%; 95\% CI −5.4\% to 2.5\%) and a small
increase in mortality (RR 1.07, 95% CI 0.88 to 1.29; risk difference 1.2%, 95% CI −2.0% to 4.9%), but moderate certainty of evidence that EVT alone had a small decrease in sICH (RR 0.75, 95% CI 0.52 to 1.07; risk difference −1.0%, 95% CI −1.8% to 0.27%).

In a Class I study, Zheng et al reviewed a total of 55 studies that included 9 RCTs and 46 observational/retrospective studies, for a total of approximately 20,000 patients. A comprehensive meta-analysis was performed for utilizing both RCTs and observational/retrospective studies to investigate various outcomes. Functional independence was defined as mRS of 0 to 2 and excellent outcomes was defined as mRS of 0 to 1. For RCTs, the IVT + EVT group reduced the risk of mortality versus EVT alone (OR 0.65, 95% CI 0.49 to 0.88, \(I^2=52\%\)), but not functional independence (OR 1.17, 95% CI 0.99 to 1.38, \(I^2=0\%\)). On the other hand, the observational studies showed that IVT + EVT had better outcomes for functional independence (OR 1.36, 95% CI 1.21 to 1.52, \(I^2=48\%\)), excellent outcomes (OR 1.49, 95% CI 1.26 to 1.75, \(I^2=4\%\)), and mortality (OR 0.73, 95% CI 0.56 to 0.94, \(I^2=67\%\)). Neither the RCTs nor observational studies showed an increased risk in sICH.

In a Class II study, Ghaith et al reviewed 49 studies (4 RCTs and 44 observational studies) for a total of 36,123 patients. In the analysis combining both RCTs and observational studies, they demonstrated that IVT + EVT had better mortality (RR 0.75, CI 95% 0.68 to 0.82, \(I^2=36\%\)), successful recanalization (RR 1.06, 95% CI 1.03 to 1.09, \(I^2=50\%\)), and 90-day functional independence (RR 1.21, 95% CI 1.13 to 1.29, \(I^2=52\%\)), but no improvement in National Institutes of Health Stroke Scale (NIHSS). Subgroups were stratified accounting to study design showing similar benefits with IVT + EVT for observational studies, but not for RCTs. No difference was seen between the 2 groups related to sICH.

Lastly, in a Class III study, Katsonos et al included 6 observational studies totaling 1,723 patients. Patients who received IVT at a PSC before transferring for EVT ("drip and ship" or DNS, 53% of the group) were compared with those receiving EVT alone at a Comprehensive Stroke Center (CSC). In their analysis adjusted for potential confounders, "DNS patients" had higher odds of mRS 0 to 1 (adjusted OR 1.32, 95% CI 1.00 to 1.74, \(I^2=0\%\)) and lower probability for all-cause mortality at 3-months (adjusted OR 0.50, 95% CI: 0.27 to 0.93, \(I^2=69\%\)) compared to patients receiving EVT alone at a CSC. No differences were found between the 2 groups in probability of 3-month disability, mRS 0 to 2, or sICH.
The majority of SRMA favored IVT + EVT. Two of the SRMA showed either improved mortality or improved functional outcomes with IVT + EVT, however these results varied based on whether the analysis utilized RCTs and/or observational studies.33,34 Of the 3 studies that looked at the RCTs alone, 1 SRMA32 showed non-inferiority of EVT alone compared with IVT + EVT in various cutoffs except for the most strict cutoff for functional outcomes while another SRMA10 suggested a possible small increase in mortality, a small decrease in recovery with minimal disability, but moderate certainty of decreased sICH with EVT alone. The other SRMA that utilized RCTs alone suggests that IVT + EVT is superior to EVT alone but is time dependent.31 Lastly in patients who are transferred, evidence suggests patients who received IVT + EVT have better functional outcomes and mortality compared with EVT alone.35

Observational and Retrospective Evidence

Multiple non-randomized Class III studies have also explored the role of thrombolysis with thrombectomy. Abilleira et al analyzed Spanish stroke registry data from Catalonia to compare EVT alone with IVT + EVT.41 After adjusting for higher proportion of patients with heart failure, atrial fibrillation, oral anticoagulation, and previous stroke among patients receiving EVT alone, no differences in 90-day mortality, symptomatic bleeding at 24 to 36 hours, or mRS 0 to 2 were noted between the 2 treatment groups.

Balodis et al reported a single-center prospective observational analysis of IVT + EVT versus EVT alone for anterior cerebral artery LVO in a single Latvian university hospital.42 Although exclusions did not include a time-of-onset for symptoms, all thrombectomy occurred within 8 hours of symptom onset and all patients presenting within 4.5 hours received IVT unless contraindications were identified, or physician’s preference was not to provide IVT. A 90-days mRS of 0 to 2 was observed in 44% of the IVT + EVT group versus 42% in the EVT-alone group. No significant differences were observed in 90-day mortality or sICH.

Broocks et al retrospectively analyzed a cohort of acute ischemic stroke patients treated at 1 of 2 high-volume tertiary stroke centers in Germany and the United States for ICA or MCA LVO.43 The Alberta Stroke Program Early CT Score (ASPECTS) was determined on pre-treatment non-contrast head CT by 1 neuroradiologist.44 Most had ASPECTS >5 (86%). Overall, those receiving IVT + EVT had better NIHSS at 24 hours (11 versus 13) and mRS at 90 days (3 versus 4). More patients in the IVT + EVT cohort had an mRS 0 to 2 at 90
days (43% versus 32%). Among the 14% with ASPECTS <6, no difference was seen for mRS 0 to 2. ASPECTS was the only variable demonstrating a significant interaction with IVT.

Casetta et al reviewed the Italian Registry of Endovascular Stroke Treatments prospective observational data from 13 hospitals which included 1,148 patients with either an ICA or MI/M2 LVO who were eligible for IVT. EVT was performed within 6 hours of symptom onset and decisions about IVT were left to the discretion of the treating neurology team. Although the median time from symptom onset to hospital arrival was similar between the 2 groups (95 minutes for IVT + EVT versus 96 minutes for EVT alone patients), the symptom onset to groin puncture was significantly prolonged in the IVT + EVT subset (230 minutes versus 210 minutes in EVT).

Multivariate analysis for stroke patients surviving with mRS 0 to 3 demonstrated a significant benefit favoring IVT + EVT (adjusted OR 1.42; 95% CI 1.04 to 1.95) and a significantly lower risk of death or unfavorable outcome in that same group (adjusted OR 0.62; 95% CI 0.45 to 0.84). No differences were found regarding sICH.

Di Maria et al retrospectively evaluated acute ischemic stroke patients involving the proximal or distal MCA or ICA within 6-hours of symptoms. A stroke neurologist decided whether or not to treat with IVT. IVT + EVT patients were matched with patients treated with EVT alone using a propensity score. An mRS 0 to 2 was more likely with IVT + EVT (OR 1.31; 95% CI 1.02 to 1.68). All-cause mortality and sICH did not differ between groups. Only ASPECTS ≥7 demonstrate the benefit of IVT + EVT compared with EVT alone (OR 1.48, 95% CI 1.10 to 2.0).

Zha et al reported a post-hoc analysis of a prospective study across 16 Chinese stroke centers. The primary outcome of mRS 0 to 2 at 90 days. In a multivariable analysis, IVT + EVT more frequently demonstrated a higher mRS 0 to 1 at 90-days (adjusted OR 2.731; 95% CI 1.238 to 6.023), but not the primary outcome of mRS 0 to 2. The 90-day mortality rate was significantly lower in the IVT + EVT cohort (13.9% versus 27.7%).

Of the 6 studies, 4 showed an improvement in functional outcomes with IVT + EVT compared with EVT alone. In several studies, the use of ASPECTS further defined which patients benefited from IVT prior to EVT. In 2 studies, mortality was decreased with IVT + EVT, but no difference in the others. Lastly, there was no increase in sICH with IVT + EVT compared with EVT alone in any of the studies.

Summary
The majority of published research favored the use of IVT + EVT over EVT alone. This includes RCTs where the majority of trials failed to show non-inferiority with EVT alone, despite using wide non-inferiority thresholds. However, there are a number of limitations to these trials including different outcome measures and different non-inferiority thresholds. Among systematic reviews, inclusion of observational studies increased observed statistical heterogeneity.

From a safety standpoint, although some studies showed a decrease in mortality with IVT + EVT, most studies showed no difference. Lastly, although there have been concerns about the increased risk of sICH with the addition of IVT before EVT, no study included in our review showed an increased risk of sICH. However, safety data from these studies may have also been under-reported. It is important that with any intervention, shared decision making is made when feasible with the patient and/or family.

Future Research

Existing research predominantly employed alteplase as the primary thrombolytic agent. Subsequent investigations should explore alternative thrombolytics, such as tenecteplase. Future studies should also look at timing of thrombolytics prior to EVT with patient outcomes. In addition, the role of ASPECTS score and other tools in identifying individuals unlikely to benefit from the addition of IVT prior to EVT should be explored prospectively. Furthermore, future studies ought to consider larger sample sizes, utilizing more stringent non-inferiority margins or ideally conducting superiority studies, as well as evaluating the cost-effectiveness of different treatment strategies.

Since the majority of the literature has focused on anterior strokes, future studies should also evaluate the role of IVT before EVT in posterior circulation strokes. Finally, more studies evaluating the role of thrombolytics in patients with an LVO who are candidates for EVT but need to be transferred are needed. This includes patients who are considered for prehospital diversion to EVT-capable centers and the use of mobile stroke units to triage potential patients for EVT.

Relevant industry relationships: There were no relevant industry relationships disclosed by the subcommittee members for this topic.
Relevant industry relationships are those relationships with companies associated with products or services that significantly influence the specific aspect of disease addressed in the critical question.
REFERENCES

Appendix E1. Literature classification schema.*

<table>
<thead>
<tr>
<th>Design/Class</th>
<th>Therapy†</th>
<th>Diagnosis‡</th>
<th>Prognosis§</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Randomized, controlled trial or meta-analysis of randomized trials</td>
<td>Prospective cohort using a criterion standard or meta-analysis of prospective studies</td>
<td>Population prospective cohort or meta-analysis of prospective studies</td>
</tr>
<tr>
<td>2</td>
<td>Nonrandomized trial</td>
<td>Retrospective observational</td>
<td>Retrospective cohort Case control</td>
</tr>
<tr>
<td>3</td>
<td>Case series</td>
<td>Case series</td>
<td>Case series</td>
</tr>
</tbody>
</table>

*Some designs (eg, surveys) will not fit this schema and should be assessed individually.
†Objective is to measure therapeutic efficacy comparing interventions.
‡Objective is to determine the sensitivity and specificity of diagnostic tests.
§Objective is to predict outcome, including mortality and morbidity.

Appendix E2. Approach to downgrading strength of evidence.

<table>
<thead>
<tr>
<th>Design/Class</th>
<th>Downgrading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>None</td>
<td>I</td>
</tr>
<tr>
<td>1 level</td>
<td>II</td>
</tr>
<tr>
<td>2 levels</td>
<td>III</td>
</tr>
<tr>
<td>Fatally flawed</td>
<td>X</td>
</tr>
</tbody>
</table>

Appendix E3. Likelihood ratios and number needed to treat.*

<table>
<thead>
<tr>
<th>LR (+)</th>
<th>LR (–)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>Does not change pretest probability</td>
</tr>
<tr>
<td>1–5</td>
<td>0.5–1</td>
<td>Minimally changes pretest probability</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>May be diagnostic if the result is concordant with pretest probability</td>
</tr>
<tr>
<td>20</td>
<td>0.05</td>
<td>Usually diagnostic</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>Almost always diagnostic even in the setting of low or high pretest probability</td>
</tr>
</tbody>
</table>

*LR, likelihood ratio.
*NNT: number needed to treat; NNT=1/absolute risk reduction×100, where absolute risk reduction is the risk difference between 2 event rates (ie, experimental and control groups).
Appendix E4. PRISMA flow diagrams.20

Critical Question Flow Diagram

Identification

Records identified from:
Databases (n = 384)
Other Sources (n = 173)

Duplicate records removed
(n = 210)

Abstracts screened
(n = 334)

Records excluded
(n = 158)

Screening

Full-text records screened
(n = 176)

Records excluded
(n = 90)

Records assessed for eligibility
(n = 86)

Records identified with fatal flaws or ultimately determined to not be applicable to the critical question
(n = 69)

Included

Studies included in review
(n = 17)
Appendix E5. Literature Searches

<table>
<thead>
<tr>
<th>Search Date</th>
<th>Database</th>
<th>Search Strings</th>
<th>Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/10/2023</td>
<td>PubMed</td>
<td>(((Mechanical Thrombectomy[tiab]) OR (Bridge Therapy[tiab]) OR (Percutaneous Thrombectomy[tiab]) OR (Endovascular Therapy[tiab]) OR (EVT[tiab]) OR (Endovascular Thrombectomy[tiab]) OR (Guided Thrombectomy[tiab]) OR (Catheter-directed Thrombectomy[tiab]) OR (Thrombectomy"[mh]" OR ("Bridge Therapy"[Mesh])) AND ((Tissue Plasminogen Activator[tiab]) OR (Alteplase[tiab]) OR (tPA[tiab]) OR (tPA) OR (Tenecteplase[tiab]) OR (Thrombolytic*[tiab]) OR (Fibrinolytic*[tiab]) OR ("Tissue Plasminogen Activator"[mh]) OR ("Tenecteplase"[mh]) OR ("Fibrinolytic Agents"[mh]) OR ("Fibrinolytic Agents [Pharmacological Action]" OR ("Thrombolytic Therapy"[mh]) AND ((Intravenous[tiab]) OR (IV[tiab]) OR (IV) OR ("Administration, Intravenous"[mh]) AND (("Acute Stroke"[tiab]) OR (Acute Ischemic Stroke[tiab]) OR (Brain Ischemia[tiab]) OR ("Stroke"[mh]) OR ("Ischemic Stroke"[mh]) OR (Brain Ischemia"[mh]) AND (Emergency Medicine[tiab]) OR (Emergency Treatment[tiab]) OR (Emergency Department[tiab]) OR (Emergency Medical Service*[tiab]) OR (EMS[tiab]) OR ("Emergency Medicine"[mh]) OR ("Emergency Service, Hospital"[mh]) OR ("Emergency Treatment"[mh]) OR ("Emergency Medical Services"[mh]))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2015-Current</td>
</tr>
<tr>
<td>4/10/2023</td>
<td>Scopus</td>
<td>TITLE-ABS-KEY("Mechanical Thrombectomy" OR "Bridge Therapy" OR "Anticoagulation Bridge" OR "Percutaneous Thrombectomy" OR "Endovascular Therapy" OR "EVT" OR "Endovascular Thrombectomy" OR "Guided Thrombectomy" OR "Directed Thrombectomy" OR "Catheter-directed Thrombectomy") AND TITLE-ABS-KEY("Tissue Plasminogen Activator" OR "Alteplase" OR "tPA" OR "tPA" OR "Tenecteplase" OR "Metalase" OR "TNKase" OR "Elaxim" OR "Thrombolytic*" OR "Fibrinolytic*") AND TITLE-ABS-KEY("Intravenous" OR "IV") AND TITLE-ABS-KEY("Stroke" OR "Acute Stroke" OR "Acute Ischemic Stroke" OR "Brain Ischemia") AND TITLE-ABS-KEY("Emergency Medicine" OR "Emergency Treatment" OR "Emergency Department" OR "Emergency Medical Service")</td>
<td>2015-Current</td>
</tr>
<tr>
<td>4/10/2023</td>
<td>Embase</td>
<td>(‘Mechanical Thrombectomy’:de,ti,ab,kw OR ‘Bridge Therapy’:ti,ab,kw OR ‘Bridging Anticoagulation’:de OR ‘Percutaneous Thrombectomy’:de,ti,ab,kw OR ‘Endovascular Therapy’:ti,ab,kw OR ‘EVT’:ti,ab,kw OR ‘Endovascular Thrombectomy’:ti,ab,kw OR ‘Guided Thrombectomy’:ti,ab,kw OR ‘Directed Thrombectomy’:ti,ab,kw OR ‘Catheter-directed Thrombectomy’:ti,ab,kw) AND (‘Tissue Plasminogen Activator’:de,ti,ab,kw OR ‘Alteplase’:de,ti,ab,kw OR ‘tPA’:ti,ab,kw OR ‘rTPA’:ti,ab,kw OR ‘Tenecteplase’:de,ti,ab,kw OR ‘Metalase’:ti,ab,kw OR ‘TNKase’:ti,ab,kw OR ‘Elaxim’:ti,ab,kw OR ‘Thrombolytic*’:ti,ab,kw OR ‘Thrombolytic Therapy’:de,ti,ab,kw OR ‘Thrombolytic treatment’:de,ti,ab,kw OR ‘Fibrinolytic’:de,ti,ab,kw) AND (‘Intravenous’:ti,ab,kw OR ‘Intravenous Drug Administration’:de,ti,ab,kw OR ‘IV’:ti,ab,kw) AND (‘Stroke’:ti,ab,kw OR ‘Cerebrovascular Accident’:de OR ‘Acute Stroke’:ti,ab,kw OR ‘Acute Ischemic Stroke’:de,ti,ab,kw OR ‘Brain Ischemia’:de,ti,ab,kw) AND (‘Emergency Medicine’:de,ti,ab,kw OR ‘Emergency Treatment’:de,ti,ab,kw OR ‘Emergency Department’:ti,ab,kw OR ‘Emergency Ward’:de,ti,ab,kw OR ‘Emergency Medical Service*’:ti,ab,kw OR ‘Emergency Health Service’:de,ti,ab,kw)</td>
<td>2015-Current</td>
</tr>
</tbody>
</table>
Appendix E5. Literature Searches (continued)

<table>
<thead>
<tr>
<th>Search Date</th>
<th>Database</th>
<th>Search Strings</th>
<th>Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/24/2022</td>
<td>Web of Science</td>
<td>TS=(“Mechanical Thrombectomy” OR “Bridge Therapy” OR "Anticoagulation Bridge" OR “Percutaneous Thrombectomy” OR “Endovascular Therapy” OR “EVT” OR “Endovascular Thrombectomy” OR “Guided Thrombectomy” OR “Directed Thrombectomy” OR “Directed Thrombectomy” OR “Catheter-directed Thrombectomy”) AND TS=(“Tissue Plasminogen Activator” OR “Alteplase” OR “tPA” OR “rTPA” OR “Tenecteplase” OR “Metalise” OR “TNKase” OR “Elaxim” OR “Thrombolytic*” OR “Fibrinolytic*”) AND TS=(“Intravenous” OR “IV”) AND TS=(“Stroke” OR “Acute Stroke” OR “Acute Ischemic Stroke” OR “Brain Ischemia”) AND TS=(“Emergency Medicine” OR “Emergency Treatment” OR “Emergency Department” OR “Emergency Medical Services”)</td>
<td>2011-Current</td>
</tr>
<tr>
<td>8/24/2022</td>
<td>Cochrane Library</td>
<td>(“Mechanical Thrombectomy”:ti,ab,kw OR “Bridge Therapy”:ti,ab,kw OR “Bridging Anticoagulation”:ti,ab,kw OR “Percutaneous Thrombectomy”:ti,ab,kw OR “Endovascular Therapy”:ti,ab,kw OR “EVT”:ti,ab,kw OR “Endovascular Thrombectomy”:ti,ab,kw OR “Guided Thrombectomy”:ti,ab,kw OR “Directed Thrombectomy”:ti,ab,kw OR “Catheter-directed Thrombectomy”:ti,ab,kw) AND (“Tissue Plasminogen Activator”:ti,ab,kw OR “Alteplase”:ti,ab,kw OR “tPA”:ti,ab,kw OR “rTPA”:ti,ab,kw OR “Tenecteplase”:ti,ab,kw OR “Metalise”:ti,ab,kw OR “TNKase”:ti,ab,kw OR “Elaxim”:ti,ab,kw OR “Thrombolytic*”:ti,ab,kw OR “Thrombolytic Therapy”:ti,ab,kw OR “Thrombolytic treatment”:ti,ab,kw OR “Fibrinolytic”:ti,ab,kw) AND (“Intravenous”:ti,ab,kw OR “Intravenous Drug Administration”:ti,ab,kw OR “IV”:ti,ab,kw) AND ("Stroke":ti,ab,kw OR “Acute Stroke”:ti,ab,kw OR “Acute Ischemic Stroke”:ti,ab,kw) AND (“Emergency Medicine”:ti,ab,kw OR “Emergency Treatment”:ti,ab,kw OR “Emergency Department”:ti,ab,kw OR “Emergency Ward”:ti,ab,kw OR “Emergency Medical Service*”:ti,ab,kw OR “Emergency Health Service”:ti,ab,kw)</td>
<td>2011-Current</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Yang et al (2020)21</td>
<td>I</td>
<td>Multi-center (Chinese tertiary care centers); prospective randomized open-label, non-inferiority trial w/blinded outcome assessments</td>
<td>Adults ≥18 y, AIS of ICA or first segment middle cerebral artery (M1)/second segment middle cerebral artery (M2) or both by computed tomography angiography (CTA) that could be treated <4.5 h after symptom onset and NIHSS ≥2; 2 arms: EVT alone vs IVT+EVT in patients with AIS with LVO; primary outcome: 90 d mRS for noninferiority (logistic regression – ordinal) margin of 0.8 via telephone/in-person interview (intention-to-treat [ITT] analysis)</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>LeCouffe et al (2021)²²</td>
<td>II</td>
<td>Multicenter, randomized, open label, clinical trial from 20 hospitals in Europe</td>
<td>Adult patients with AIS randomly assigned to either endovascular treatment or IVT followed by endovascular treatment; outcomes: mRS at 90 d; sICH; mortality</td>
</tr>
<tr>
<td>Fischer et al (2022)²³</td>
<td>II</td>
<td>Multicenter, academic centers in Europe and Canada; non-inferiority, randomized clinical trial</td>
<td>Adults with acute AIS+LVO, onset <4.5 h; thrombectomy alone vs thrombectomy + IV alteplase; efficacy outcome: mRS 0 to 2 at 90 d; safety outcome: ICH</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Zi et al (2021)²⁴</td>
<td>II</td>
<td>Multicenter (China) noninferiority study, 4-block randomized 1:1</td>
<td>Adults ≥18 y, AIS of proximal circulation occlusion strokes that could be treated <4.5 h after symptom onset; 2 arms: EVT alone vs IVT+EVT in patients with AIS; outcomes: proportion of patients with mRS 0 to 2 at 90 d (assessors were blinded neurologists) vs telephone call or video call with non-inferiority margin of -10%; safety outcomes were sICH within 48 h and 90 d mortality</td>
</tr>
</tbody>
</table>
Evidentiary Table (continued).

<table>
<thead>
<tr>
<th>Author & Year Published</th>
<th>Class of Evidence</th>
<th>Setting & Study Design</th>
<th>Methods & Outcome Measures</th>
<th>Results</th>
<th>Limitations & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suzuki et al (2021)²⁵</td>
<td>II</td>
<td>Multicenter, randomized, open label, noninferiority clinical trial from 23 centers in Japan</td>
<td>Adult patients randomly assigned to MT alone or IVT+MT; outcomes: mRS 0 to 2 at 90 d; mortality; sICH</td>
<td>N=204; mRS 0 to 2; 59% in MT group vs 57% in bridge thrombolysis plus thrombectomy, (P=.18); among 7 secondary efficacy endpoints and 4 safety endpoints, 10 were not different, including mortality (8% vs 9%, (P=1.0)) and sICH (6% vs 8%, (P=.78))</td>
<td>Open label, unblinded</td>
</tr>
<tr>
<td>Mitchell et al (2022)²⁶</td>
<td>III</td>
<td>Multicenter, randomized, open label, noninferiority clinical trial from 25 acute-care hospitals in Australia, New Zealand, China, and Vietnam</td>
<td>Adult patients with AIS eligible for thrombolysis, allocated 1:1 to either direct thrombectomy or IVT plus thrombectomy; outcomes: mRS 0 to 2 at 90 d; mRS 0 to 1 at 90 d; sICH; mortality</td>
<td>N=295; 148 assigned to direct thrombectomy and 147 assigned to bridge therapy; mRS 0 to 2: 55% for thrombectomy group vs 61% for bridge thrombolysis plus thrombectomy, OR 0.75 (95% CI 0.45 to 1.24, (P=.19)) for noninferiority, (P=.26) for superiority; sICH: 1% vs 2%, OR 1.70 (95% CI 0.22 to 13.04, (P=0.61)); mortality: 15% vs 16%, OR 0.92 (95% CI 0.46 to 1.84, (P=.82))</td>
<td>Open label, unblinded to treatment although blinded outcome assessment; trial terminated early; some imbalances in baseline characteristics</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
<td>Results</td>
<td>Limitations & Comments</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Kaesmacher et al (2024)</td>
<td>I</td>
<td>Individual participant data meta-analysis from 6 randomized clinical trials 190 sites across 15 countries</td>
<td>Systematic review and meta-analysis to estimate the association of treatment with IVT plus thrombectomy vs thrombectomy alone and better outcomes was modified by the time from stroke symptom onset to treatment; primary outcome: disability at 90 d using the mRS</td>
<td>6 randomized clinical trials; N=2,313, 1,160 IVT + thrombectomy, 1,153 thrombectomy alone; median time from symptom onset to IVT administration was 2 h 28 min (inter quartile range [IQR] 1 h 46 min to 3 h 17 min); statistically significant interaction between time from symptom onset to administration of IVT and functional outcome (aOR per 1-h delay 0.84 (95% CI 0.72 to 0.97), P=.02 for interaction); after 2 h 20 min, the benefit associated with IVT + thrombectomy was not significant and the point estimate crossed the null association at 3 h 14 min</td>
<td>Trials performed at thrombectomy-capable stroke centers; only patients with anterior circulation large-vessel occlusion were included; nearly all patients in the IVT + thrombectomy group were treated with alteplase; thus, results may not be generalizable to those treated with tenecteplase</td>
</tr>
<tr>
<td>Lin et al (2022)</td>
<td>II</td>
<td>Meta-analysis of randomized clinical trials</td>
<td>Trials comparing thrombectomy alone vs IVT plus thrombectomy among adults with AIS-LVO; Primary outcome: functional independence (mRS 0 to 2) at 90 d</td>
<td>N=4 trials with 1,633 participants; 817 assigned to thrombectomy alone vs 816 to bridge thrombolysis plus thrombectomy; pooled difference with risk difference of 1% for good functional outcomes (95% CI –4% to 5%); pooled difference in sICH was also 1%, 95% CI –1% to 3%</td>
<td>Included studies with different noninferiority margins</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
<td>Results</td>
<td>Limitations & Comments</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Wang et al (2022)10</td>
<td>II</td>
<td>Meta-analysis of randomized clinical trials</td>
<td>Trials of adult patients with AIS comparing thrombectomy alone vs IVT plus thrombectomy; outcomes: mRS 0 to 2; sICH; mortality</td>
<td>N=6 trials with 2,334 participants; mRS 0 to 2: pooled RR 0.97 (95% CI 0.89 to 1.05); sICH: pooled RR 0.75 (95% CI 0.52 to 1.07); mortality: 1.07 (95% CI 0.88 to 1.29)</td>
<td>Only used fixed effects modeling; limited subgroup/sensitivity analyses</td>
</tr>
<tr>
<td>Zheng et al (2023)33</td>
<td>I</td>
<td>Meta-analysis</td>
<td>RCTs of MT alone vs MT+IVT for patients with AIS secondary to anterior circulation large vessel occlusion; outcomes: 3 mo mRS score 0 to 2; sICH at 24 h or 36 h; mortality at discharge or 3 mo; 3 mo mRS 0 to 1</td>
<td>mRS 0 to 2: 6 studies. aOR 1.17 (95% CI 0.99 to 1.38); sICH: 6 studies; aOR: 1.07 (95% CI 0.79 to 1.46); mortality: 6 studies; aOR 0.65 (95% CI 0.49 to 0.88) favoring IVT+EVT mRS score 0 to 1: 4 studies; aOR: 1.11 (95% CI 0.90 to 1.38)</td>
<td>Heterogeneity is less of a factor in the adjusted analysis. Data reported here are from RCTs although the published manuscript also includes data from observational studies</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
<td>Results</td>
<td>Limitations & Comments</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Ghaith et al (2022)³⁴</td>
<td>II</td>
<td>Meta-analysis</td>
<td>Included studies on patients with AIS-LVO, exposed/experimental group received IVT+MT and comparison group only MT; outcomes: favorable neurological function based on mRS; mortality, successful recanalization, complications; comparative studies designs including both experimental and quasi-experimental, or observational designs</td>
<td>N=49 studies; pooled RR for favorable neurological outcome, 45% for bridge thrombolysis plus thrombectomy group vs 39% for thrombectomy alone, RR 1.21 (95% CI 1.13 to 1.29, P<.0001); subgroup analyses by study design showed favorable outcomes for bridge thrombolysis among observational studies (RR 1.25, 95% CI 1.17 to 1.34) but not for experimental studies (RR 0.99, 95% CI 0.89 to 1.09); sICH: RR 0.88 (95% CI 0.70 to 1.10, P=.27)</td>
<td>Subgroup analysis by study design demonstrated significant differences in reported efficacy; heterogeneity among studies, although random effects modeling used to mitigate</td>
</tr>
</tbody>
</table>

³⁴ Ghaith et al (2022)
Evidentiary Table (continued).

<table>
<thead>
<tr>
<th>Author & Year Published</th>
<th>Class of Evidence</th>
<th>Setting & Study Design</th>
<th>Methods & Outcome Measures</th>
<th>Results</th>
<th>Limitations & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katsanos et al (2023)³⁵</td>
<td>III</td>
<td>Meta-analysis</td>
<td>Observational studies of patients with LVO receiving IVT at a primary stroke center before transfer for EVT vs transfer for EVT alone; outcomes: 3 mo mRS of 0 to 1; 3 mo mRS scores of 0 to 2; sICH within 48 h; 3 mo all-cause mortality</td>
<td>mRS 0 or 1: 5 studies, 1,518 participants; aOR 1.32 (95% CI 1.00 to 1.74) favoring IVT+EVT mRS 0 to 2: 5 studies, 1,518 participants; aOR 1.22 (95% CI 0.95 to 1.58); symptomatic ICH: 5 studies, 1,535 participants; aOR 0.72 (95% CI 0.42 to 1.25); mortality: 5 studies; 1,549 participants; aOR: 0.50 (95% CI 0.27 to 0.93) favoring IVT+EVT</td>
<td>Included primarily lower quality studies which studies patients who received thrombectomy rather than patients who were eligible for thrombectomy</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
<td>Results</td>
<td>Limitations & Comments</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Abilleira et al (2017)</td>
<td>III</td>
<td>Regional registry retrospective cohort from Catalonia, Spain</td>
<td>Patients with anterior circulation stroke caused by large vessel occlusion; EVT vs bridging thrombolysis prior to EVT; outcomes: mRS 0 to 2 at 3 mo; death; symptomatic bleeding 24 h to 36 h</td>
<td>N=1,166; 599 received EVT only and 567 IVT followed by EVT; OR for mRS 0 to 2 at 90 d: 0.97 (95% CI 0.74 to 1.27); OR for death: 1.07 (95% CI 0.74 to 1.54); OR for symptomatic bleeding: 0.56 (95% CI 0.25 to 1.27)</td>
<td>Discrepancies in important baseline features is accounted for by using propensity score to stratify subjects into blocks; outcome assessments are unblinded; study population included only patients who received thrombectomy rather than those who were eligible for thrombectomy</td>
</tr>
<tr>
<td>Balodis et al (2019)</td>
<td>III</td>
<td>Prospective single-center study from Latvia</td>
<td>Patients with acute stroke and eligible for endovascular treatment; EVT vs bridging thrombolysis prior to EVT; outcomes: mRS 0 to 2 at discharge and 90 d; symptomatic and asymptomatic intracranial hemorrhage; mortality</td>
<td>N=146; 84 received bridging thrombolysis followed by thrombectomy, 62 received thrombectomy alone; mRS 0 to 2: 44% in bridging group vs 42% in thrombectomy only group, OR 0.48 (95% CI 0.22 to 1.07), P=.14; mortality: 17% in bridging group vs 21% in thrombectomy only group, P=.57; symptomatic hemorrhage: 12% in bridging group vs 10% in thrombectomy only group, P=.79</td>
<td>Single center; non-randomized; limited adjustment, including for treatment by indication; unclear outcome assessment blinding</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
<td>Results</td>
<td>Limitations & Comments</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Broocks et al (2022)43</td>
<td>III</td>
<td>Multicenter, academic center in Germany and the United States; retrospective cohort</td>
<td>Adults with AIS+LVO who received EVT, with or without IVT, 2013 to 2021; outcome: functional independence (mRS 0 to 2) at 90 d</td>
<td>N=720, IVT (N=366) vs no IVT (N=354); proportions with favorable outcome: IVT (43%) vs none (32%); aOR 1.57 (95% CI 1.16 to 2.14) for functional independence, favoring IVT</td>
<td>Multivariable regression analysis with propensity weighting, but residual confounding due to treatment indication may bias estimates</td>
</tr>
<tr>
<td>Casetta et al (2019)45</td>
<td>III</td>
<td>Regional registry, multicenter prospective enrollment from an Italian registry; 13 centers</td>
<td>All patients who underwent endovascular treatment, either thrombectomy only vs IV thrombolytics plus thrombectomy for anterior circulation stroke; outcomes: mRS at 90 d; sICH</td>
<td>N=1,148, 635 with IV thrombolytics plus thrombectomy, 513 with thrombectomy only; IPTW mRS 0 to 2; OR 1.3 (95% CI 0.98 to 1.75); IPTW sICH: OR 2.1 (95% CI 0.93 to 1.62)</td>
<td>Propensity score methods, including use of IPTW; residual confounding still possible; unclear blinding outcome assessment</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
<td>Results</td>
<td>Limitations & Comments</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Di Maria et al (2018)⁴⁶</td>
<td>III</td>
<td>Retrospective registry cohort from 3 stroke centers located in France</td>
<td>Adult patients with AIS within 6 h of onset with imaging evidence of anterior circulation occlusion; outcomes: mRS 0 to 2 at 90 d; sICH</td>
<td>N=1,507; of the 1,507, 65% received IV thrombolytics; 407 propensity score matched patients and use of multiple imputation to account for missing data; propensity matched mRS 0 to 2: 49% in the thrombolytics plus thrombectomy group vs 45% in the thrombectomy only group, OR 1.21 (95% CI 0.90 to 1.63), P=.21; sICH: 9% for the thrombolytic plus thrombectomy vs 7% for the thrombectomy only group, OR 1.21 (95% CI 0.70 to 2.09, P=.5)</td>
<td>Propensity score methods, including matching and adjustment; residual confounding still possible; no apparent blinding for outcome assessment</td>
</tr>
<tr>
<td>Author & Year Published</td>
<td>Class of Evidence</td>
<td>Setting & Study Design</td>
<td>Methods & Outcome Measures</td>
<td>Results</td>
<td>Limitations & Comments</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Zha et al (2021)(^{47})</td>
<td>III</td>
<td>Post-hoc analysis of a multicenter, prospective cohort study from China</td>
<td>Adult, AIS with baseline mRS <2 who received thrombectomy within 8 h or bridge thrombolysis (within 4.5 h) plus thrombectomy; outcomes: mRS 0 to 2 at 90 d and successful recanalization; sICH; mortality</td>
<td>N=245; propensity score matching with use of multiple imputation for missing values, resulting in 65 pairs; propensity score matched mRS 0 to 2: 49% in bridging thrombolysis group vs 42% in thrombectomy only group, (P = .46); propensity score matched mRS 0 to 1: 43% in bridging thrombolysis group vs 25% in thrombectomy only group, (P = .023); propensity score matched sICH: 11% in bridging thrombolysis group vs 9% in thrombectomy alone group, (P = 1.0); propensity score matched mortality: 15% in bridging thrombolysis group vs 25% in thrombectomy alone group, (P = .31)</td>
<td>Non-randomized limited power; limited detail regarding use of propensity score methods and thus concern related to remaining imbalances between groups</td>
</tr>
</tbody>
</table>

\(AIS \), acute ischemic stroke; \(aOR \), adjusted odds ratio; \(CI \), confidence interval; \(d \), day; \(EVT \), endovascular thrombectomy; \(h \), hour; \(ICH \), intracranial hemorrhage; \(IPTW \), inverse probability of treatment weighting; \(IQR \), interquartile range; \(IVT \), intravenous thrombolysis; \(LVO \), large vessel occlusion; \(min \), minutes; \(mo \), month; \(MT \), mechanical thrombectomy; \(OR \), odds ratio; \(RR \), risk ratio; \(sICH \), symptomatic intracranial hemorrhage; \(vs \), versus; \(y \), year.
Appendix E6. Articles graded for methodological rigor but ultimately found to be fatally flawed.

Platko, S., et al., *Intravenous thrombolysis prior to mechanical thrombectomy does not affect clinical or procedural outcomes in patients with large vessel occlusion acute ischemic stroke*. J Clin Neurosci, 2022. 100: p. 120-123.

