1	Clinical Policy: Critical Issues in the Evaluation of Adult Patients Presenting to the Emergency					
2	Department with Acute Blunt Trauma					
3	This DRAFT is EMBARGOED – Not for Distribution					
4						
5						
6	From the American College of Emergency Physicians Clinical Policies Subcommittee (Writing Committee) on					
7	Blunt Trauma					
8						
9	Charles I. Gerardo, MD. MHS. FACEP (Subcommittee Chair)					
10	Michelle Blanda MD FACEP					
10	Nidhi Gara MD FACEP					
12	Kaushal H. Shah. MD. FACEP					
12	Dichard Durny MD, MSc. EACED (Mathodologist)					
13	Stonhon I. Wolf MD (Committee Co. Choir)					
14	Dehereh P. Diereka MD. MSe (Committee Co-Chair)					
15	Deboran B. Diereks, WD, Wise (Committee Co-Chair)					
16						
17	Members of the American College of Emergency Physicians Clinical Policies Committee (Oversight Committee):					
18						
19	Stephen J. Wolf, MD (Chair 2018 – 2020, Co-Chair, 2021-2022)					
20	Deborah B. Diercks, MD, MSc (Committee Co-Chair, 2021-2022, Chair 2023-2024)					
21	John Anderson, MD					
22	Richard Byyny, MD, MSc (Methodologist)					
23	Christopher R. Carpenter, MD, FACEP					
24	John T. Finnell, MD					
25	Benjamin W. Friedman, MD (Methodologist)					
26	Seth R. Gemme, MD					
27	Charles J. Gerardo, MD, MHS					
28	Steven A. Godwin, MD					
29	Sigrid A. Hahn, MD, MPH					
30	Benjamin W. Hatten, MD, MPH					
31	Jason S. Haukoos, MD, MSc (Methodologist)					
32	Amy Kaji, MD, MPH, PhD (Methodologist)					
33	Heemun Kwok, MD, MS (Methodologist)					
34	Bruce M. Lo, MD, MBA, RDMS					
35	Sharon E. Mace, MD, FACEP, FAAP					
36	Maggie Moran, MD (EMRA Representative)					
37	Susan B. Promes, MD, MBA, FACEP					
38	Kaushal H. Shah, MD, FACEP					
39	Richard D. Shih, MD, FACEP					
40	Scott M. Silvers, MD, FACEP					
41	Andrea Slivinski, RN, DNP (ENA Representative)					
42	Michael D. Smith, MD, MBA, FACEP					
43	Molly E. W. Thiessen, MD					
44	Christian A. Tomaszewski, MD, MS, MBA, FACEP					
45	Stacy A. Trent, MD, MPH (Methodologist)					
46	Jonathan H. Valente, MD, FACEP					
47	Stephen P. Wall, MD, MSc, MAEd (Methodologist)					
48	Lauren M. Westafer, DO					
49	Yanling Yu, PhD (Advocate for Patient Safety)					
50	Stephen V. Cantrill, MD, FACEP (Liaison with Quality and Patient Safety Committee)					
51	Travis Schulz, MLS, AHIP, Staff Liaison, Clinical Policies Committee					
52	Kaeli Vandertulip, MBA, MSLS, AHIP, Staff Liaison, Clinical Policies Committee and Subcommittee on Blunt					
53	Trauma					

54 ABSTRACT

This clinical policy from the American College of Emergency Physicians is a revision of the 55 2018 "Clinical Policy: Critical Issues in the Evaluation of Adult Patients Presenting to the Emergency 56 Department with Acute Blunt Abdominal Trauma".¹ A writing subcommittee conducted a systematic 57 review of the literature to derive evidence-based recommendations to answer the following clinical 58 questions: 1) In adult patients presenting to the emergency department with blunt trauma, does whole-59 body CT improve clinically important outcomes in hemodynamically stable patients? 2) In geriatric 60 61 patients presenting to the emergency department with blunt trauma, does age-based, differential trauma triage reduce morbidity and/or mortality? 3) In adult patients presenting to the emergency department 62 with blunt trauma, what is the ideal blood product ratio to reduce morbidity and /or mortality in patients 63 64 requiring transfusion? 4) In adult patients presenting to the emergency department with blunt trauma, does resuscitative endovascular balloon occlusion of the aorta (REBOA) reduce morbidity and/or 65 mortality in arrested or peri-arrest patients compared to ED thoracotomy? Evidence was graded and 66 recommendations were made based on the strength of the available data. 67

68

69 **INTRODUCTION**

Trauma is a leading cause of death in the United States and contributes to more years of potential life lost compared to any other cause of death.^{2,3} Blunt trauma is the most common mechanism of injury. The triage, evaluation, and treatment of these patients is a routine element of the practice of emergency medicine.⁴ Consequently, there is substantial opportunity in the emergency department (ED) to minimize preventable morbidity and mortality due to blunt trauma. This policy is an update of the 2018 American College of Emergency Physicians' (ACEP) clinical policy on acute blunt abdominal trauma¹ which is now expanded to address acute blunt trauma not limited to the abdomen.

Despite the high prevalence of patients with blunt trauma, care of these patients is constantly evolving and continues to present a clinical challenge. For example, occult injury remains common as physical examination has limited accuracy in patients with altered mental status, intoxication, other distracting injuries or even in asymptomatic patients with a normal sensorium.^{5,6} This fact, combined 81 with technical advances in CT, have resulted in changes to cross-sectional imaging protocols since the
82 last clinical policy update. Our understanding of the response of the geriatric population to blunt trauma
83 has also evolved and this has resulted in the variable incorporation of age into trauma triage. Lastly,
84 lessons learned from military trauma care, such as resuscitation with changing blood product ratios and
85 incorporation of advanced invasive techniques for managing non-compressible torso hemorrhage, have
86 been applied and studied in civilian blunt trauma.

87 This policy will address current challenges in the diagnosis and treatment of adult patients with 88 blunt trauma in the era of evolving cross sectional imaging approaches, differential trauma triage 89 incorporating age, blood product resuscitation ratios, and resuscitative endovascular balloon aortic 90 occlusion (REBOA).

91

92 **METHODOLOGY**

This ACEP clinical policy was developed by emergency physicians with input from medical
librarians and a patient safety advocate. It is based on a systematic review and critical, descriptive
analysis of the medical literature and is reported in accordance with Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines.⁷

97

98 Search and Study Selection

99 This clinical policy is based on a systematic review with a critical analysis of the medical literature meeting the inclusion criteria. Searches of PubMed, SCOPUS, Embase, Web of Science, and 100 101 the Cochrane Database of Systematic Reviews were performed by a librarian. Search terms and 102 strategies were peer reviewed by a second librarian. All searches were limited to human studies 103 published in English. Specific key words/phrases, years used in the searches, dates of searches, and study selection are identified under each critical question. In addition, relevant articles from the 104 bibliographies of included studies and more recent articles identified by committee members and 105 106 reviewers were included.

107 Two subcommittee members independently read the identified abstracts to assess them for 108 possible inclusion. Of those identified for potential inclusion, each full-length text was reviewed for 109 eligibility. Those identified as eligible were subsequently forwarded to the committee's methodology 110 group (emergency physicians with specific research methodological expertise) for methodological 111 grading using a Class of Evidence framework (Appendix A.).

112

113 Assessment of Risk of Bias and Determination of Classes of Evidence

Each study identified as eligible by the subcommittee was independently graded by 2 methodologists. Grading was done with respect to the specific critical questions; thus, the Class of Evidence for any one study may vary according to the question for which it is being considered. For example, an article that is graded an "X" because of "inapplicability" for one critical question may be considered perfectly relevant for another question and graded I to III. As such, it was possible for a single article to receive a different Class of Evidence grade when addressing a different critical question.

Design 1 represents the strongest possible study design to answer the critical question, which relates to whether the focus was therapeutic, diagnostic, prognostic, or meta-analysis. Subsequent design types (ie, design 2 and design 3) represent weaker study designs, respectively. Articles are then graded on dimensions related to the study's methodological features and execution, including but not limited to randomization processes, blinding, allocation concealment, methods of data collection, outcome measures and their assessment, selection and misclassification biases, sample size, generalizability, data management, analyses, congruence of results and conclusions, and potential for conflicts of interest.

Using a predetermined process that combines the study's design, methodological quality, and applicability to the critical question, 2 methodologists independently assigned a preliminary Class of Evidence grade for each article. Articles with concordant grades from both methodologists received that grade as their final grade. Any discordance in the preliminary grades was adjudicated through discussion, which involved at least 1 additional methodologist, resulting in a final Class of Evidence assignment (ie, class I, class II, class III, or class X) (Appendix B). Studies identified with significant
methodologic limitations and/or ultimately determined to not be applicable to the critical question
received a Class of Evidence grade "X" and were not used in formulating recommendations for this
policy. However, the content in these articles may have been used to formulate the background and to
inform expert consensus in the absence of evidence. Question-specific Classes of Evidence grading may
be found in the Evidentiary Table included at the end of this policy.

139

140 Translation of Classes of Evidence to Recommendation Levels

Based on the strength of evidence for each critical question, the subcommittee drafted the recommendations and supporting text, synthesizing the evidence using the following guidelines:

Level A recommendations. Generally accepted principles for patient care that reflect a high
 degree of scientific certainty (eg, based on evidence from 1 or more Class of Evidence I, or multiple
 Class of Evidence II studies that demonstrate consistent effects or estimates).

146 Level B recommendations. Recommendations for patient care that may identify a particular 147 strategy or range of strategies that reflect moderate scientific certainty (eg, based on evidence from 1 or 148 more Class of Evidence II studies or multiple Class of Evidence III studies that demonstrate consistent 149 effects or estimates).

150 Level C recommendations. Recommendations for patient care that are based on evidence from 151 Class of Evidence III studies or, in the absence of adequate published literature, based on expert 152 consensus. In instances where consensus recommendations are made, "consensus" is placed in 153 parentheses at the end of the recommendation.

There are certain circumstances in which the recommendations stemming from a body of evidence should not be rated as highly as the individual studies on which they are based. Factors such as consistency of results, the uncertainty of effect magnitude, and publication bias, among others, might lead to a downgrading of recommendations. When possible, clinically oriented statistics (eg, likelihood ratios [LRs], number needed to treat) are presented to help the reader better understand how the results 159 may be applied to the individual patient. This can assist the clinician in applying the recommendations

160 to most patients but allow adjustment when applying to patients with extremes of risk (Appendix C).

161

162 Evaluation and Review of Recommendations

Once drafted, the policy was distributed for internal review (by members of the entire 163 committee), followed by an external expert review and an open comment period for all ACEP 164 165 membership. Comments were received during a 60-day open comment period, with notices of the comment period sent electronically to ACEP members, published in EM Today, posted on the ACEP 166 167 website, and sent to other pertinent physician organizations. The responses were used to further refine 168 and enhance this clinical policy, although responses did not imply endorsement. Clinical policies are scheduled for revision every 3 years; however, interim reviews are conducted when technology, 169 methodology, or the practice environment changes significantly. 170 171 Application of the Policy 172 This policy is not intended to be a complete manual on the evaluation and management of 173 patients with suspected appendicitis but rather a focused examination of critical questions that have 174

particular relevance to the current practice of emergency medicine. The potential benefits and harms of
implementing recommendations are briefly summarized within each critical question.

177 It is the goal of the Clinical Policies Committee to provide evidence-based recommendations

178 when the scientific literature provides sufficient quality information to inform recommendations for a 179 critical question. When the medical literature does not contain adequate empirical data to inform a 180 critical question, the members of the Clinical Policies Committee believe that it is equally important to

alert emergency physicians to this fact.

182 This clinical policy is not intended to represent a legal standard of care for emergency 183 physicians. Recommendations offered in this policy are not intended to represent the only diagnostic or 184 management options available to the emergency physician. ACEP recognizes the importance of the

185	individual physician's judgment and patient preferences. This guideline provides clinical strategies
186	based on medical literature to inform the critical questions addressed in this policy. ACEP funded this
187	clinical policy.
188 189	<i>Scope of Application.</i> This guideline is intended for physicians working in EDs.
190 101	Inclusion Criteria. This guideline is intended for non-pregnant adult blunt trauma patients.
191 192 193 194	<i>Exclusion Criteria.</i> This guideline is not intended for pediatric, pregnant, or penetrating trauma patients.
195	CRITICAL QUESTIONS
196	1. In adult patients presenting to the emergency department with blunt trauma, does whole-body
197	CT improve clinically important outcomes in hemodynamically stable patients?
198	
199	Patient Management Recommendations
200	Level A recommendations. None specified.
201	Level B recommendations. None specified.
202	Level C recommendations. Due to the lack of quality evidence, use clinical judgement and
203	hospital-specific protocols to decide between selective CT and whole-body CT imaging in
204	hemodynamically stable, adult, blunt trauma patients. [Consensus]
205	
206	Potential Benefit of Implementing the Recommendations:
207	The spectrum of trauma patients arriving at the emergency department is very broad. Given the
208	equipoise in risks and benefits of whole-body CT among hemodynamically stable trauma patients, using
209	clinical judgment will likely lead to the appropriate resource utilization, minimal radiation exposure, and
210	the best outcome for a given patient.

211 Potential Harm of Implementing the Recommendations:

212	Without clear decision-rules, over-use and under-use of whole-body CT in trauma is possible.				
213	Over-use would result in additional cost, unnecessary radiation exposure, and potentially false positive				
214	findings that require further evaluation and unnecessary risks. Under-use could result in missed				
215	diagnoses and delays in diagnosis.				
216					
217	Key words/phrases for literature searches: nonpenetrating wounds, nonpenetrating injuries, blunt				
218	trauma, blunt injuries, contusions, bruise, beating injuries, whole-body scan, pan scan, computed				
219	tomography, CT, whole-body imaging, x-ray computed tomography, hemodynamics, stable				
220	hemodynamics, hemodynamically stable, trauma centers, emergency departments, emergency wards,				
221	emergency rooms, emergency services and variations and combinations of the key words/phrases.				
222	Searches included January 2003 to the search dates of July 6, 2020, and May 20, 2021.				
223					
224	Study Selection:				
225	Eight hundred and thirteen articles were identified in the searches. Forty-two articles were				
226	identified from the search results for further review. After grading for methodologic rigor, 0 Class I				
227	studies, 0 Class II studies, and 0 Class III studies were included for this question.				
228					
229	Main Text				
230	There were 42 articles identified to help answer the question, however they were all deemed to				
231	be either low relevance regarding this critical question or low quality as assessed by the methodologists.				
232	No articles were graded as level 3 or higher. Nevertheless, there are insights that may be relevant to				
233	emergency physicians.				
234	Whole-body CT has become commonplace in the evaluation of trauma patients. ⁸ There are				
235	several meta-analyses that demonstrate a mortality benefit for patients who meet "trauma activation				
236	criteria" or the need for a trauma team evaluation. ⁹⁻¹¹ In addition, multiple studies also report the benefit				

of identifying unexpected findings and change in management.^{12,13} Within this cohort that meet trauma

activation criteria, the injury severity can vary tremendously and it is possible that the benefits are
driven by the select cohort of more severely injured patients, whereas this question focuses on wholebody CT in the hemodynamically stable patient population.

REACT-2, a large, multicenter randomized trial by Sierink et al¹⁴concluded that whole-body CT 241 compared to selective imaging did not demonstrate a difference in mortality. This widely cited study 242 was excluded from consideration because it provided only indirect evidence to answer our question and 243 244 had important methodologic limitations. We considered this study indirect evidence as it studied a mixed population of hemodynamically unstable and stable patients. The important methodologic 245 limitations resulting in additional downgrading of this study to an X included: randomization without 246 247 concealment, inability to blind physicians and patients, and approximately 15% of the patients were excluded after randomization without a clearly reported reason. 248

The additional studies evaluated and graded X did not contribute substantially to our recommendation.¹⁵⁻¹⁷ All demonstrated that injuries of uncertain clinical significance were found by whole-body CT. Some authors concluded that these injuries were not impactful, while others concluded that that they were important.¹⁵⁻¹⁷

253

254

Brief Summary

In summary, the yield of clinically important outcomes from whole-body CT among hemodynamically stable trauma patients is low. However, unexpected significant injuries and emergency interventions are occasionally identified. Whether early identification and intervention for these injuries results in improved clinically important outcomes remains unclear. Consequently, we recommend using clinical judgement and local protocols in the use of whole-body CT versus selective CT in hemodynamically stable blunt trauma patients.

261 <u>Future Research</u>

A large high quality randomized trial comparing whole-body CT to selective CT for

263 hemodynamically stable trauma patients with a reliable exam using a clear, widely accepted definition

of a clinically important injury, is necessary to answer this question and help guide emergency

2. In geriatric patients presenting to the emergency department with blunt trauma, does age-

265 physicians on best practices in CT imaging of trauma patients.

266

267

268	based, differential trauma triage reduce morbidity and/or mortality?			
269	Patient Management Recommendations			
270	Level A recommendations. None specified.			
271	Level B recommendations.			
272	Emergency physicians should factor age (greater than 65 years) into triage of older adult trauma patients			
273	as they have increased morbidity and mortality, compared with similarly injured adults.			
274	Level C recommendations. None specified.			
275				
276	Potential Benefit of Implementing the Recommendations			
277	Incorporating age into trauma triage for older adult blunt trauma patients would enhance early			
278	identification of at-risk patients. This could lead to more timely diagnostic evaluation and therapeutic			
279	interventions in this time-dependent disease with resultant improved outcomes.			
280				
281	Potential Harm of Implementing the Recommendations			
282	Incorporating age into trauma triage for older adult blunt trauma patients may decrease the			
283	specificity and increase resource utilization without consequent improvement of morbidity and			
284	mortality. Additionally, unnecessary diagnostic evaluation and treatment may occur when an older			
285	patient is incorrectly triaged to be high risk.			
286				
287	Key words/phrases for literature searches:			
288	nonpenetrating wounds, nonpenetrating injuries, blunt trauma, blunt injuries, contusions, bruise,			
289	beating injuries, geriatric, aged, older adult, elder, elderly, gerontology, triage, differential triage, age-			

290 based triage, morbidity, mortality, death, trauma centers, emergency departments, emergency wards,

291 emergency rooms, emergency services and variations and combinations of the key words/phrases.

292 Searches included January 2003 to the search dates of July 6, 2020 and May 20, 2021.

293

294 <u>Study Selection:</u>

Eight hundred and sixteen articles were identified in the searches. Seventy-four articles were identified from the search results for further review. After grading for methodologic rigor, 0 Class I studies, 0 Class II studies, and 6 Class III studies were included for this question.

298 Main Text

Age is a risk factor for mortality in trauma patients.¹⁸⁻²⁰The older population has decreased physiologic reserve compared with their younger counterparts. Additionally, immune function is impaired, and older adults have unique alterations in pulmonary function and cardiovascular response to injury and shock. Polypharmacy is common, and many older patients are on anticoagulation. Early identification of an at-risk population is the goal of trauma triage as there is evidence that improved outcomes occur when early intensive monitoring and aggressive fluid resuscitation is performed.^{21,22}

The National Guidelines for the Field Triage of Injured patients in 2021: Recommendations of the National Expert Panel on Field Triage²³ uses a criterion of age greater than 65 years with a systolic blood pressure (SBP) less than 110 mmHg or HR greater than SBP for recommending medical care in a specialized trauma centers. This is changed from prior guidelines in which age was considered but there were the same recommendations for SBP as there were for all adults. For older adults, the benefit of specialized tertiary trauma centers is less clear than for children or other adult patients.

The effectiveness of field triage is commonly looked at by the degree of over- and under-triage. Under-triage has been shown to be the highest in older adults and half of seriously injured adults are treated in non-trauma centers in the United States.²⁴⁻²⁷ This under-triage suggests that the older adult is not consistently being taken to hospitals best equipped to meet their needs. This is not unique to the United States. Destination non-compliance led to poorer outcomes for older trauma patients. It has been 316 shown that not only were older adults under triaged compared to their younger counterparts, but a larger 317 proportion of the in-hospital deaths occur in centers with no major trauma services compared to major 318 trauma centers.²⁸

In a Class III, retrospective cohort study by Lim et al,²⁹ the mortality of older adult, even when risk stratified, was increased by 2.7% for each year of life. Additionally, in a Class III study by Ahmed¹⁹, the authors evaluated patients 65 years and older who look normal after a fall from ground level at home. In this study of 40,800 patients 938 (2.3%) patients died in the hospital. and logistic regression showed older age was associated with a higher risk of in-hospital mortality. The additional Class III studies included for review here are also retrospective reviews of trauma databases.³⁰⁻³³ They look at modifying the criteria, for adult trauma triage based on age to determine

either the effects on morbidity and mortality or the criteria's ability to predict morbidity and mortality.
As we know that early intervention in severely injured trauma improves morbidity and mortality, these
studies can provide only indirect evidence of benefit or harm.

The Class III study by Ichwan³⁰ defined patients aged 70 years or older as "geriatric." Based on 329 age, this study modified multiple elements of the trauma triage criteria to assess a revised older adult 330 trauma triage. Of 101,577 patients, 33,379 (33%) were aged \geq 70 years old. This cohort of older adults 331 were less severely injured, with only 13% having an Injury Severity Score (ISS) greater than 15 332 indicating moderate to severe injury, compared with 29% of younger adults. They were also less likely 333 334 to have an ICU stay (17% versus 28%) and an operating room procedure within 48 hours (13% versus 29%). Interestingly, despite the older group being less injured (lower ISS, fewer ICU and OR 335 336 admissions) the mortality between the 2 groups was similar with 6.8% of older adults and 9.3% of younger adults dying in the ED or hospital. Modification of the adult trauma triage as described 337 improved sensitivity from 61% (95% CI 60%, 62%) to 93% (95% CI 92%, 94%). There was a 338 339 concomitant modest decrease in specificity from 61% (95% CI 61%, 62%) to 49% (95% CI 48%, 49%). The improvement in the test performance of this proposed "geriatric" trauma triage compared to non-340 age-based criteria is demonstrated in the change in likelihood ratios, which were calculated based on the 341

study's data. With age-based triage the positive likelihood ratio improved from 1.6 to 1.8 and the
negative likelihood ratio improved more dramatically from 0.8 to 0.1. This suggests the geriatric criteria
improve our ability to identify older patients with serious injuries, need for operative or ICU care, or
death.

In another Class III study, Brown³¹ evaluated the performance of substituting an SBP of less than 346 110 mm Hg for the current SBP of less than 90 mm Hg criterion. The primary outcome was under- and 347 348 over-triage as defined by the ISS, which is an established surrogate for clinical outcome for trauma activation criteria. In this 12-year study 428,828 older adults were identified, they found that substituting 349 an SBP of less than 110 mm Hg for the current SBP of less than 90 mm Hg in older patients achieves a 350 351 reduction in 4.4% under-triage with a 4.3 % increase in over-triage. Regarding mortality, the older patients with SBP of 90 mm Hg to 109 mm Hg had an odds of mortality similar to older patients with 352 SBP of less than 90 mm Hg (adjusted odds ratio, 1.03; 95% confidence interval, 0.88-1.20; p = 0.71). 353 Anantha et al^{32} evaluated whether a geriatric-specific (age > 65 years) triage protocol 354 appropriately identified severely injured (ISS>15) trauma patients. The modified criteria for trauma 355 activation included: SBP less than 110 mm Hg (rather than 90 mm Hg), HR less than 50 or greater than 356 100 bpm, any MVC or fall from any height. They report that 61% of the severely injured older patients 357 were under-triaged despite the geriatric-specific trauma triage protocol. Fortunately, mortality in the 358 under-triaged group was 5% vs the 31% in the correctly identified group. They concluded that despite 359 360 geriatric triage protocols, older adults remain under-triaged as measured by ISS, but that age-based protocols do capture the highest risk patients. 361

In 2018, Hung et al³³ published the performance of the activation criteria for the trauma system in Hong Kong where the trauma team activation (TTA) criteria have been specifically modified for older adults and included risk factors such as rib fractures. In this 10-year cohort study (2006 to 2015), 2218 patients over the age of 55 were identified. The 30-day mortality was 7.5% for those aged 55–70 and 17.7% for those above 70 years of age. The under-triage rate was 59% for age 55–70, and 69.1% for those aged above 70. The sensitivity of TTA in identifying severe outcomes decreases as the age increases. This study reinforces that age is an important triage criteria and possibly specific criteria
should be developed for patients older than 70 years of age.

370

371 Brief Summary

With advancing age in adult blunt trauma patients, standard trauma triage criteria under perform in predicting severity of illness and outcomes. Age based trauma triage improves the criteria's ability to prevent under-triage and limit over-triage. As there is evidence of under- and over-triage's impact on morbidity and mortality, there is indirect evidence supporting age-based trauma triage to improve patient outcomes.

377 Future Research

The definition of geriatric is still variable in research (ranging from an age cutoff of 55 years to 70 years). Future research should focus on an acceptable definition of the older trauma patient and determine subpopulations who will benefit from triage to major trauma centers., The direct effect on morbidity, mortality, resource utilization, and the effectiveness of trauma system implementation should be prospectively assessed.

Further work incorporating both quantitative and qualitative methods will be required to better understand factors to address how to manage the older trauma patient and identify appropriate remedies and their implementation. This should focus on geographic differences, patient preferences, EMS provider training and preferences, structure of the EMS system, and local facility factors.

387

388 3. In adult patients presenting to the emergency department with blunt trauma, what is the ideal
blood product ratio to reduce morbidity and /or mortality in patients requiring transfusion?
390

391 Patient Management Recommendations

392 *Level A recommendations*. None specified.

393 Level B recommendations

394	In adult patients presenting to the emergency department with blunt trauma, use a fresh frozen
395	plasma (FFP): platelet: packed red blood cells (PRBC) ratio from1:1:1 to1:1:1.5 to reduce 24-
396	hour mortality without increasing morbidity.
397	Level C recommendations. None specified.
398	
399	Potential Benefit of Implementing the Recommendations
400	• Administration of recommended blood product ratios within 6 hours of resuscitation may
401	decrease 24-hour mortality, exsanguination and hypothermia.
402	• The identification of optimal goal of blood product ratio will allow trauma centers and blood
403	banks to protocolize massive transfusion protocols (MTP) to improve consistency of high-quality
404	care.
405	
406	Potential Harm of Implementing the Recommendations
407	Increased FFP and platelet ratios may create new needs and stress on the existing limited blood product
408	supply.
409	
410	Key words/phrases for literature searches:
411	nonpenetrating wounds, nonpenetrating injuries, blunt trauma, blunt injuries, contusions, bruise,
412	beating injuries, blood transfusion, blood product, blood product ratio, leukocyte transfusion, blood
413	platelet transfusion, massive transfusion protocol, autologous blood transfusion, erythrocyte transfusion,
414	morbidity, mortality, death, trauma centers, emergency departments, emergency wards, emergency
415	rooms, emergency services and variations and combinations of the key words/phrases. Searches
416	included January 2003 to the search dates of July 6, 2020 and May 20, 2021.
417	

418 <u>Study Selection:</u>

Eight hundred and six were identified in the searches. Two-hundred and ninety articles were

420 identified from the search results for further review. After grading for methodologic rigor, 0 Class I

421 studies, 0 Class II studies, and 5 Class III studies were included for this question.

422

423 <u>Text</u>

Hemorrhage is a leading cause of death in blunt trauma. Massive Transfusion Protocols (MTPs) 424 have been utilized to prevent mortality from hemorrhage. Massive transfusion is defined as >10 units of 425 packed red cells over 24 hours.³⁴⁻⁴⁵ Massive transfusion is an independent risk factor for mortality and 426 morbidity and is associated with acute coagulopathy and severe immunologic responses⁴⁶⁻⁴⁹ leading to 427 Multiorgan Failure (MOF) and Acute Respiratory Distress Syndrome (ARDS).⁵⁰⁻⁵⁵ Acute coagulopathy 428 is also a complication in 2% to 34% of blunt trauma patients receiving MTP, and is an independent 429 factor associated with mortality.^{47,56,57} Ratios of blood product, specifically ratios of fresh frozen plasma 430 (FFP) and platelets to packed red blood cells (PRBC) (FFP: platelets: PRBC), administration in MTP 431 has evolved over time. Additionally, damage control surgery has changed the utilization of blood 432 products and in recent times, FFP: platelet: PRBC ratios of 1:1:1 are frequently employed in clinical 433 practice based on US military experience.⁵⁸⁻⁶⁰ Given the complex nature of MTPs, the proportion of 434 FFP: platelets: PRBC is a topic of interest and varying ratios are employed and recommended by 435 different societies.⁶¹ We performed a comprehensive review of the medical literature comparing adult 436 437 trauma patients requiring transfusions in blunt trauma patients. The literature review yielded 806 publications. Articles were excluded due to poor study design, incorrect population, incorrect 438 439 intervention, or incorrect outcomes. Of the 25 remaining publications, 20 were deemed to be low relevance with regard to the critical question or low methodologic as assessed by the methodologists and 440 5 level III studies are included in this policy.⁶²⁻⁶⁶ 441

In order to understand the methods and findings of these studies, a point of mathematical nomenclature used in this literature must be clarified. When discussing ratios of units of FFP or platelets to PRBC, a ratio of 1:1 is greater than 1:2, just as 1 divided by1 is greater than 1 divided by 2. This 445 applies to the nomenclature for multiple ratios as well. Hence a ratio of FFP: platelet: PRBC of 1:1:1 is446 greater than 1:1:1.5 which is greater than 1:1:2.

447	The first study by Brown et al^{62} in 2012 was a multicenter prospective cohort study. In this
448	study, a high FFP/PRBC (≥1:1.5) ratio was analyzed as a time dependent variable and at 6 hours
449	was independently associated with reduction in 6, 12 and 24-hour mortality and a high FFP/PRBC
450	(≥1:1.5) ratio at 12 hours was independently associated with a mortality reduction at 12 hours and
451	24 hours, and a high ratio at 24 hours was associated with a decline in mortality at 24 hours. Similarly,
452	high platelet/PRBC (≥1:1.5) ratio was associated with an independent reduction in mortality.
453	A high ratio of FFP/PRBC or platelet/PRBC at 6 and 12 hours did not increase the risk of
454	developing MOF, nosocomial infection (NI), or ARDS during admission. This study showed that early
455	resuscitation using high FFP/PRBC and platelet/PRBC ratios leads to reduced mortality at 6 hours
456	and throughout the first 24 hours from injury. When time-dependent analysis was performed, an
457	increasing FFP/PRBC and platelet/PRBC ratio prevents early death from hemorrhage. ⁶²
458	The study by Reynolds et al ⁶³ was also a multicenter prospective cohort study of 1961 patients
459	and it suggests that even in those patients requiring massive transfusions who received a high
460	FFP/PRBC transfusion ratio, a temperature lower than 34 C° was not a significant independent
461	risk factor for mortality (OR, 1.8; 95% CI, 0.9, 33.5) as opposed to low FFP/PRBC ratio group with
462	more than a two-fold higher risk of mortality (OR, 2.2; 95% CI, 1.1±4.2). Hypothermia is common in
463	temperature induced coagulopathy (TIC) patients and is associated with a greater independent risk of
464	mortality of more than 85% in patients requiring MTP. This study suggests that effect of hypothermia
465	can be controlled by the means of adequate resuscitation with high FFP/RBC ratio and may be the
466	underlying mechanism behind mortality benefit in high ratio group.

Hagiwara et al⁶⁴ conducted a retrospective observational study across 15 sites in Japan with 189 blunt trauma patients and propensity score matching was performed to compare the two groups (FFP: PRBC ratio \geq 1 within the first 6 h and FFP: PRBC ratio <1 within the first 6 h). Patients with an FFP: 470PRBC ratio ≥1 within the first 6h had significantly better survival, with an unadjusted hazard ratio of4710.44 and an adjusted hazard ratio of 0.29. Blunt trauma patients transfused with an FFP: RBC ratio ≥ 1472within the first 6 h after admission had an unadjusted hazard ratio of about 0.4 (95% CI 0.25, 0.74) and473an adjusted hazard ratio of 0.29 (95% CI 0.14, 0.62). This study suggested a benefit to an early474administration of FFP in severe blunt trauma patients requiring blood transfusion.

Holcomb et al⁶⁵ conducted the Pragmatic Randomized Optimal Platelet and Plasma Ratios
(PROPPR) Randomized Clinical Trial which was a pragmatic, phase 3, multisite, randomized clinical
trial of 680 severely injured patients across 12 level I trauma centers. In this trial, administration of FFP,
platelets, PRBC in a 1:1:1 ratio compared with a 1:1:2 ratio had no significant differences in 24 hours
mortality and 30-day mortality. However, higher rate of hemostasis in the 1:1:1 group and fewer deaths
in 24 hours due to exsanguination.

The last study that met inclusion was Sperry et al,⁶⁶ which was a multicenter prospective cohort 481 study evaluating clinical outcomes in blunt injured adults with hemorrhagic shock patients who received 482 an FFP: PRBC transfusion ratio >1:1.5 compared to patients who received <1: 1.5. Patient receiving 483 greater ratios of FFP to PRBC had a significant lower risk of in-hospital mortality following massive 484 transfusion which was most pertinent for mortality within the first 48 hours. Cox proportional hazard 485 regression revealed that receiving a high ratio of FFP: PRBC was independently associated with lower 486 mortality when adjusted for likely confounders, HR 0.48, 95% CI 0.3, 0.8). This study showed a dose-487 response relationship for mortality such that as FFP: PRBC ratio became smaller (less FFP relative to 488 PRBCs) the patients who received minimal or no FFP had the highest early 24-hour mortality. 489

In adult patients presenting to the emergency department with blunt trauma, an FFP: platelet:
PRBC ratio between 1:1:1 and 1:1:1.5 is ideal to reduce 24-hour mortality. This ratio also decreases
exsanguination and FFP: PRBC ratios ≥1:1.5 reduces risk of death by hypothermia in the first 24 hours
of resuscitation. FFP should be given within first 6 hours of resuscitation with goal of FFP: RBC ≥1:1.5.

494					
495	Brief Summary				
496	Literature has recently supported use of 1:1:1 FFP: platelet: PRBC ratio. There is no significant				
497	difference in morbidity in either 1:1:1 or 1:1:1.5 group.				
498					
499	Future Research				
500	Laboratory guided resuscitation has been shown to have equivocal results with 1:1:1 FFP:				
501	Platelet: RBC ratio with less of utilization of non PRBC blood products, which may not universally				
502	available. Future trials to be designed with \geq 1:1:1.5 FFP: Platelet: RBC ratio, whole-blood, and				
503	laboratory guided resuscitation.				
504					
505	4. In adult patients presenting to the emergency department with blunt trauma, does resuscitative				
506	endovascular balloon occlusion of the aorta (REBOA) reduce morbidity and/or mortality in				
507	arrested or peri-arrest patients compared to ED thoracotomy?				
508					
509	Patient Management Recommendations				
510	Level A recommendations. None specified.				
511	Level B recommendations.				
512	In arrested or peri-arrest adult, blunt trauma patients, do not routinely use REBOA over ED				
513	thoracotomy.				
514	Level C recommendations. None specified.				
515					
516	Potential Benefit of Implementing the Recommendations				
517	Prevention of potential harms of REBOA if no benefit				
518					
519	Potential Harm of Implementing the Recommendations				

520 Select, as of yet undefined, populations may benefit from REBOA.

521

522

Key words/phrases for literature searches:

523 nonpenetrating wounds, nonpenetrating injuries, blunt trauma, blunt injuries, contusions, bruise,

524 beating injuries, REBOA, Resuscitative endovascular balloon occlusion of the aorta, Cardiac Arrest,

525 Thoracotomy, cardiopulmonary arrest, asystoles, morbidity, mortality, death, trauma centers, emergency

526 departments, emergency wards, emergency rooms, emergency services and variations and combinations

527 of the key words/phrases. Searches included January 2003 to the search dates of July 6, 2020 and May

528 20, 2021.

529

530 <u>Study Selection:</u>

Eight hundred articles were identified in the searches. One hundred and sixty-eight articles were identified from the search results for further review; 30 articles were sent to the methodologists for grading. After grading for methodologic rigor, 0 Class I studies, 0 Class II studies, and 2 Class III studies were included for this question.

535

536 <u>Text</u>

Traumatic arrest from non-compressible torso hemorrhage due to blunt trauma has a high 537 mortality.^{67,68}Hemorrhage control using ED resuscitative thoracotomy (RT) results in low survival rates 538 in arrested or peri-arrest blunt trauma patients.⁶⁹ Resuscitative endovascular balloon occlusion of the 539 540 aorta (REBOA) has been proposed as an alternative to RT. This technique serves as a method of temporary hemorrhage control as a bridge to definitive treatment. It has seen application in both military 541 and civilian trauma care.⁷⁰The procedure uses common femoral artery catheter access to inflate an 542 occlusive balloon at different zones of the aorta. The aorta can be divided into three zones; zone 1 is 543 from the left subclavian artery to the celiac trunk, zone 2 is below the celiac and suprarenal, and zone 3 544

is infrarenal to the aortic bifurcation. REBOA is deployed in zone 1 for severe intra-abdominal or
 retroperitoneal hemorrhage, whereas zone 3 is used for pelvic hemorrhage.⁷¹

In the early observational evaluation of REBOA in trauma, its use was associated with improved 547 mortality.^{69,72-86} However, these studies' design and execution commonly suffered survival bias and bias 548 by indication, as the patients undergoing RT typically had cardiac arrest in these cohorts.⁷⁰ These studies 549 often also included penetrating and blunt trauma patients, making the determination of value suspect in 550 blunt trauma patients specifically. Due to these confounders, it is unclear if these non-randomized, 551 552 observational studies compared two similar populations and were ultimately graded X in our evaluation. We performed a comprehensive review of the medical literature comparing REBOA to RT in 553 arrested and peri-arrest blunt trauma patients. The literature review vielded 800 publications. Articles 554 were excluded due to poor study design, incorrect population, incorrect intervention, or incorrect 555 outcomes. Of the 32 remaining publications, 30 were excluded using our systematic grading criteria and 556 2 level III studies are included in this policy.^{67,68} 557 In the first study by Aso et al,⁶⁸ the investigators performed a retrospective review of the 558 559 National Inpatient Database in Japan from 2010 – 2014. Two hundred and fifty-nine trauma patients, aged >15 years old, with uncontrolled hemorrhagic shock were included in their analysis. Penetrating 560 thoracic trauma patients were excluded. Importantly, the authors used propensity scoring to address the 561 potential biases of prior observational studies. The primary outcome was mortality and secondary 562 outcomes included ventilator-free days, total hospitalization costs, total amount of fluid resuscitation and 563 total transfusion within day 1. Using the propensity score-adjusted analysis, this study found no benefit 564 with REBOA versus RT in the primary outcome (hazard ratio 0.94; 95% CI, 0.60-1.48), nor in the 565 secondary outcomes. The author's concluded that in-hospital outcomes were not significantly different 566 between REBOA and RT in trauma patients with uncontrolled hemorrhage.⁶⁸ 567

568	The second study graded level III, by Joseph et al, ⁶⁷ was conducted in the US. The authors
569	performed a case-control retrospective analysis of the 2015-2016 American College of Surgeons Trauma
570	Quality Improvement Program (ACS-TQIP) dataset using an advanced propensity score matching
571	process. This larger study evaluated 420 total patients, of which 140 REBOA patients (cases) were
572	matched 1:2 with 280 non-REBOA patients (controls). The outcome measures were rates of mortality
573	and complications. The mortality was higher in the REBOA group (35.7% vs 18.9%, $p = 0.01$) and
574	specific complications, acute kidney injury and lower extremity amputation, were also higher, (10.7% vs
575	3.2%, $p = 0.02$) and (3.6% vs 0.7%, $p = 0.04$) respectively. Application of this study is limited by the
576	fact that it included penetrating trauma, albeit 92.1% were blunt trauma patients. The authors concluded
577	that REBOA was associated with higher mortality, acute kidney injury and lower leg amputation rates. ⁶⁷
578	In addition to the level III evidence that does not show a benefit from REBOA in this patient
579	population, REBOA requires a multi-disciplinary team with structured protocols, policies, education and
580	quality assessments. The vast majority of trauma centers in the US do not have REBOA capabilities,
581	much less the majority of EDs. ⁷⁰ Given that there is no demonstrated benefit, and may be harm, it is
582	unlikely to be cost effective to stand up these programs for use in this broadly defined blunt trauma
583	population of patients. There are existing REBOA programs that will continue to refine a potential
584	patient population that benefits from this intervention. Our recommendations do not apply to a military
585	setting or to penetrating trauma patients.

586

587 <u>Summary</u>

588 There are limitations, such as the inclusion of some penetrating trauma patients, to the highest 589 quality literature available to determine if there is benefit of REBOA versus RT. The best available 590 evidence concludes that REBOA is associated with no benefit and potential harm.^{67,68} Consequently, we 591 do not recommend its routine use in arrested and peri-arrest adult blunt trauma patients.

592

593 <u>Future Research</u>

- 594 At the time of this writing, there are ongoing trials of REBOA in other disease states including
- 595 post-partem hemorrhage and non-traumatic out-of-hospital cardiac arrest. These studies combined with
- 596 further insights from sub-groups of blunt trauma patients may give insight into a blunt trauma
- 597 population that may benefit. A randomized clinical trial of REBOA in a sub-population of arrested and
- 598 peri-arrest adult blunt trauma patients would be necessary to recommend its routine use.
- 599

600 **REFERENCES**

- 601
- 1. Diercks DB, Mehrotra A, Nazarian DJ, et al. Clinical policy: critical issues in the evaluation of adult patients presenting to the emergency department with acute blunt abdominal trauma. *Ann Emerg Med.* 2011;57(4):387-404. doi:10.1016/j.annemergmed.2011.01.013
- 2. US Centers for Disease Control and Prevention. Web-based Injury Statistics Query and Reporting System (WISQARS). 2017. Available at: https://www.cdc.gov/injury/wisqars/index.html. Accessed September 9, 2019.
- 3. Rhee P, Joseph B, Pandit V, Aziz H, Vercruysse G, Kulvatunyou N, et al. Increasing trauma deaths in the United States. *Ann Surg*. 2014;260(1):13-21.
- Beeson MS, Ankel F, Bhat R, et al. The 2019 Model of the Clinical Practice of Emergency Medicine. *J Emerg Med.* 2020;59(1):96-120. doi:10.1016/j.jemermed.2020.03.018
- 5. Leenellett E, Rieves A. Occult Abdominal Trauma. *Emerg Med Clin North Am.* 2021;39(4):795-806. doi:10.1016/j.emc.2021.07.009
- 6. Roberts GJ, Jacobson LE, Amaral MM, et al. Cross-sectional imaging of the torso reveals occult injuries in asymptomatic blunt trauma patients. *World J Emerg Surg.* 2020;15:5. Published 2020 Jan 9. doi:10.1186/s13017-019-0287-5
- 7. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
- Jeffrey Y. Shyu, MD, MPHa Shyu JY, Khurana B, Soto JA, et al. Major blunt trauma. ACR Appropriateness Criteria, 2019. Accessed January 18, 2024. https://acsearch.acr.org/docs/3102405/Narrative/
- 9. Arruzza E, Chau M, Dizon J. Systematic review and meta-analysis of whole-body computed tomography compared to conventional radiological procedures of trauma patients. *Eur J Radiol*. 2020;129:109099. doi:10.1016/j.ejrad.2020.109099
- Chidambaram S, Goh EL, Khan MA. A meta-analysis of the efficacy of whole-body computed tomography imaging in the management of trauma and injury. *Injury*. 2017;48(8):1784-1793. doi:10.1016/j.injury.2017.06.003
- 11. Gunn ML, Kool DR, Lehnert BE. Improving Outcomes in the Patient with Polytrauma: A Review of the Role of Whole-Body Computed Tomography. *Radiol Clin North Am*. 2015;53(4):639-vii. doi:10.1016/j.rcl.2015.02.006
- 12. Self ML, Blake AM, Whitley M, Nadalo L, Dunn E. The benefit of routine thoracic, abdominal, and pelvic computed tomography to evaluate trauma patients with closed head injuries. *Am J Surg.* 2003;186(6):609-614. doi:10.1016/j.amjsurg.2003.08.003
- 13. Salim A, Sangthong B, Martin M, Brown C, Plurad D, Demetriades D. Whole body imaging in blunt multisystem trauma patients without obvious signs of injury: results

of a prospective study. *Arch Surg*. 2006;141(5):468-475. doi:10.1001/archsurg.141.5.468

- Sierink JC, Treskes K, Edwards MJ, et al. Immediate total-body CT scanning versus conventional imaging and selective CT scanning in patients with severe trauma (REACT-2): a randomised controlled trial. *Lancet*. 2016;388(10045):673-683. doi:10.1016/S0140-6736(16)30932-1
- 15. Moussavi N, Ghani H, Davoodabadi A, et al. Routine versus selective chest and abdominopelvic CT-scan in conscious blunt trauma patients: a randomized controlled study. *Eur J Trauma Emerg Surg*. 2018;44(1):9-14. doi:10.1007/s00068-017-0842-2
- 16. Roberts J, Watts S, Klim S, Ritchie P, Kelly AM. Yield of serious axial injury from pan scans after blunt trauma in haemodynamically stable low-risk trauma patients. *Emerg Med Australas*. 2019;31(3):399-404. doi:10.1111/1742-6723.13174
- Sampson MA, Colquhoun KB, Hennessy NL. Computed tomography whole body imaging in multi-trauma: 7 years experience. *Clin Radiol*. 2006;61(4):365-369. doi:10.1016/j.crad.2005.12.009
- Keller JM, Sciadini MF, Sinclair E, O'Toole RV. Geriatric trauma: demographics, injuries, and mortality. *J Orthop Trauma*. 2012;26(9):e161-e165. doi:10.1097/BOT.0b013e3182324460
- 19. Ahmed N, Greenberg P. Early risk stratification of in hospital mortality following a ground level fall in geriatric patients with normal physiological parameters. *Am J Emerg Med*. 2020;38(12):2531-2535. doi:10.1016/j.ajem.2019.12.031
- 20. Meldon SW, Reilly M, Drew BL, Mancuso C, Fallon W Jr. Trauma in the very elderly: a community-based study of outcomes at trauma and nontrauma centers. *J Trauma*. 2002;52(1):79-84. doi:10.1097/00005373-200201000-00014
- 21. Demetriades D, Karaiskakis M, Velmahos G, et al. Effect on outcome of early intensive management of geriatric trauma patients. *Br J Surg.* 2002;89(10):1319-1322. doi:10.1046/j.1365-2168.2002.02210.x
- 22. Caterino JM, Valasek T, Werman HA. Identification of an age cutoff for increased mortality in patients with elderly trauma. *Am J Emerg Med.* 2010;28(2):151-158. doi:10.1016/j.ajem.2008.10.027
- Newgard CD, Fischer PE, Gestring M, et al. National guideline for the field triage of injured patients: Recommendations of the National Expert Panel on Field Triage, 2021. J Trauma Acute Care Surg. 2022;93(2):e49-e60. doi:10.1097/TA.00000000003627
- 24. Newgard CD Zive D Holmes JF Bulger EM Staudenmayer K Liao M, et al. A multisite assessment of the American College of Surgeons Committee on Trauma field triage decision scheme for identifying seriously injured children and adults. *J Am Coll Surg*. 2011;213(6):709–721.
- 25. Newgard CD Fu R Zive D Rea T Malveau S Daya M, et al. Prospective validation of the national field triage guidelines for identifying seriously injured persons. *J Am Coll Surg.* 2016;222(2):146–158.
- 26. Garwe T Stewart K Stoner J Newgard CD Scott M Zhang Y, et al. . Out-of-hospital and inter-hospital under-triage to designated tertiary trauma centers among injured older adults: a 10-year statewide geospatial-adjusted analysis. *Prehosp Emerg Care*. 2017;21(6):734–743.
- 27. Uribe-Leitz T Jarman MP Sturgeon DJ Harlow AF Lipsitz SR Cooper Z, et al. National study of triage and access to trauma centers for older adults. *Ann Emerg Med.* 2020;75(2):125–135.
- Cox S, Morrison C, Cameron P, Smith K. Advancing age and trauma: triage destination compliance and mortality in Victoria, Australia. *Injury*. 2014;45(9):1312-1319. doi:10.1016/j.injury.2014.02.028

- 29. Lim YD, Lee DH, Lee BK, Cho YS, Choi G. Validity of the Korean Triage and Acuity Scale for predicting 30-day mortality due to severe trauma: a retrospective single-center study. *Eur J Trauma Emerg Surg*. 2020;46(4):895-901. doi:10.1007/s00068-018-1048-y
- Ichwan B, Darbha S, Shah MN, et al. Geriatric-specific triage criteria are more sensitive than standard adult criteria in identifying need for trauma center care in injured older adults. *Ann Emerg Med.* 2015;65(1):92-100.e3. doi:10.1016/j.annemergmed.2014.04.019
- 31. Brown JB, Gestring ML, Forsythe RM, et al. Systolic blood pressure criteria in the National Trauma Triage Protocol for geriatric trauma: 110 is the new 90. *J Trauma Acute Care Surg.* 2015;78(2):352-359. doi:10.1097/TA.00000000000523
- 32. Anantha RV, Painter MD, Diaz-Garelli F, et al. Undertriage Despite Use of Geriatric-Specific Trauma Team Activation Guidelines: Who Are We Missing?. Am Surg. 2021;87(3):419-426. doi:10.1177/0003134820951450
- 33. Hung KK, Yeung JHH, Cheung CSK, et al. Trauma team activation criteria and outcomes of geriatric trauma: 10 year single centre cohort study. *Am J Emerg Med*. 2019;37(3):450-456. doi:10.1016/j.ajem.2018.06.011
- 34. Barbosa RR, Rowell SE, Sambasivan CN, et al. A predictive model for mortality in massively transfused trauma patients. *J Trauma*. 2011;71(2 Suppl 3):S370-S374. doi:10.1097/TA.0b013e318227f18f
- 35. Chang R, Kerby JD, Kalkwarf KJ, et al. Earlier time to hemostasis is associated with decreased mortality and rate of complications: Results from the Pragmatic Randomized Optimal Platelet and Plasma Ratio trial. *J Trauma Acute Care Surg*. 2019;87(2):342-349. doi:10.1097/TA.0000000002263
- 36. Falcone RE, Fried SJ, Zeeb P, Satiani B. Rapid volume replacement with warmed blood and fluids. *Angiology*. 1989;40(11):964-969. doi:10.1177/000331978904001105
- 37. Faringer PD, Mullins RJ, Johnson RL, Trunkey DD. Blood component supplementation during massive transfusion of AS-1 red cells in trauma patients. J Trauma. 1993;34(4):481-487. doi:10.1097/00005373-199304000-00002
- Farion KJ, McLellan BA, Boulanger BR, Szalai JP. Changes in red cell transfusion practice among adult trauma victims. *J Trauma*. 1998;44(4):583-587. doi:10.1097/00005373-199804000-00004
- 39. Givergis R, Munnangi S, Fayaz M Fomani K, Boutin A, Zapata LC, Angus LG. Evaluation of massive transfusion protocol practices by type of trauma at a level I trauma center. *Chin J Traumatol*. 2018;21(5):261-266. doi:10.1016/j.cjtee.2018.01.005
- 40. Murry JS, Zaw AA, Hoang DM, et al. Activation of Massive Transfusion for Elderly Trauma Patients. *Am Surg.* 2015;81(10):945-949.
- 41. Riskin DJ, Tsai TC, Riskin L, et al. Massive transfusion protocols: the role of aggressive resuscitation versus product ratio in mortality reduction. *J Am Coll Surg*. 2009;209(2):198-205. doi:10.1016/j.jamcollsurg.2009.04.016
- 42. Sisak K, Manolis M, Hardy BM, Enninghorst N, Bendinelli C, Balogh ZJ. Acute transfusion practice during trauma resuscitation: who, when, where and why?. *Injury*. 2013;44(5):581-586. doi:10.1016/j.injury.2012.08.031
- 43. Sisak K, Manolis M, Hardy BM, Enninghorst N, Balogh ZJ. Epidemiology of acute transfusions in major orthopaedic trauma. *J Orthop Trauma*. 2013;27(7):413-418. doi:10.1097/BOT.0b013e31827d7f30
- 44. Stevens WT, Morse BC, Bernard A, et al. Incompatible type A plasma transfusion in patients requiring massive transfusion protocol: Outcomes of an Eastern Association

for the Surgery of Trauma multicenter study. *J Trauma Acute Care Surg*. 2017;83(1):25-29. doi:10.1097/TA.000000000001532

- 45. Weinberg JA, McGwin G Jr, Marques MB, et al. Transfusions in the less severely injured: does age of transfused blood affect outcomes?. *J Trauma*. 2008;65(4):794-798. doi:10.1097/TA.0b013e318184aa11
- 46. Bochicchio GV, Napolitano L, Joshi M, Bochicchio K, Meyer W, Scalea TM. Outcome analysis of blood product transfusion in trauma patients: a prospective, riskadjusted study. *World J Surg.* 2008;32(10):2185-2189. doi:10.1007/s00268-008-9655-0
- 47. Akbari E, Safari S, Hatamabadi H. The effect of fibrinogen concentrate and fresh frozen plasma on the outcome of patients with acute traumatic coagulopathy: A quasi-experimental study. *Am J Emerg Med.* 2018;36(11):1947-1950. doi:10.1016/j.ajem.2018.02.018
- 48. Dunne JR, Malone DL, Tracy JK, Napolitano LM. Allogenic blood transfusion in the first 24 hours after trauma is associated with increased systemic inflammatory response syndrome (SIRS) and death. *Surg Infect (Larchmt)*. 2004;5(4):395-404. doi:10.1089/sur.2004.5.395
- 49. Powell EK, Hinckley WR, Gottula A, Hart KW, Lindsell CJ, McMullan JT. Shorter times to packed red blood cell transfusion are associated with decreased risk of death in traumatically injured patients. *J Trauma Acute Care Surg*. 2016;81(3):458-462. doi:10.1097/TA.00000000001078
- 50. Charles A, Shaikh AA, Walters M, Huehl S, Pomerantz R. Blood transfusion is an independent predictor of mortality after blunt trauma. *Am Surg.* 2007;73(1):1-5. doi:10.1177/000313480707300101
- 51. Croce MA, Tolley EA, Claridge JA, Fabian TC. Transfusions result in pulmonary morbidity and death after a moderate degree of injury. *J Trauma*. 2005;59(1):19-24. doi:10.1097/01.ta.0000171459.21450.dc
- 52. Mahambrey TD, Fowler RA, Pinto R, et al. Early massive transfusion in trauma patients: Canadian single-centre retrospective cohort study. *Can J Anaesth*. 2009;56(10):740-750. doi:10.1007/s12630-009-9151-5
- 53. Robinson WP 3rd, Ahn J, Stiffler A, et al. Blood transfusion is an independent predictor of increased mortality in nonoperatively managed blunt hepatic and splenic injuries. *J Trauma*. 2005;58(3):437-445. doi:10.1097/01.ta.0000153935.18997.14
- 54. Wudel JH, Morris JA Jr, Yates K, Wilson A, Bass SM. Massive transfusion: outcome in blunt trauma patients. *J Trauma*. 1991;31(1):1-7.
- 55. Kivioja A, Myllynen P, Rokkanen P. Survival after massive transfusions exceeding four blood volumes in patients with blunt injuries. *Am Surg.* 1991;57(6):398-401.
- 56. MacLeod JB, Winkler AM, McCoy CC, Hillyer CD, Shaz BH. Early trauma induced coagulopathy (ETIC): prevalence across the injury spectrum. *Injury*. 2014;45(5):910-915. doi:10.1016/j.injury.2013.11.004
- 57. Mitra B, Mori A, Cameron PA, Fitzgerald M, Paul E, Street A. Fresh frozen plasma (FFP) use during massive blood transfusion in trauma resuscitation. *Injury*. 2010;41(1):35-39. doi:10.1016/j.injury.2009.09.029
- 58. Cap AP, Spinella PC, Borgman MA, Blackbourne LH, Perkins JG. Timing and location of blood product transfusion and outcomes in massively transfused combat casualties. *J Trauma Acute Care Surg.* 2012;73(2 Suppl 1):S89-S94. doi:10.1097/TA.0b013e318260625a
- 59. Riha GM, Schreiber MA. Update and new developments in the management of the exsanguinating patient. *J Intensive Care Med*. 2013;28(1):46-57. doi:10.1177/0885066611403273

- 60. Teixeira PG, Oncel D, Demetriades D, et al. Blood transfusions in trauma: six-year analysis of the transfusion practices at a Level I trauma center. *Am Surg.* 2008;74(10):953-957.
- 61. Dzik WH, Blajchman MA, Fergusson D, et al. Clinical review: Canadian National Advisory Committee on Blood and Blood Products--Massive transfusion consensus conference 2011: report of the panel. *Crit Care*. 2011;15(6):242. doi:10.1186/cc10498
- 62. Brown JB, Cohen MJ, Minei JP, et al. Debunking the survival bias myth: characterization of mortality during the initial 24 hours for patients requiring massive transfusion. *J Trauma Acute Care Surg*. 2012;73(2):358-364. doi:10.1097/TA.0b013e31825889ba
- 63. Reynolds BR, Forsythe RM, Harbrecht BG, et al. Hypothermia in massive transfusion: have we been paying enough attention to it?. *J Trauma Acute Care Surg*. 2012;73(2):486-491.
- 64. Hagiwara A, Kushimoto S, Kato H, et al. Can Early Aggressive Administration of Fresh Frozen Plasma Improve Outcomes in Patients with Severe Blunt Trauma?--A Report by the Japanese Association for the Surgery of Trauma. *Shock*. 2016;45(5):495-501. doi:10.1097/SHK.00000000000536
- 65. Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. *JAMA*. 2015;313(5):471-482. doi:10.1001/jama.2015.12
- 66. Sperry JL, Ochoa JB, Gunn SR, et al. An FFP:PRBC transfusion ratio >/=1:1.5 is associated with a lower risk of mortality after massive transfusion. *J Trauma*. 2008;65(5):986-993. doi:10.1097/TA.0b013e3181878028
- 67. Joseph B, Zeeshan M, Sakran JV, et al. Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma. *JAMA Surg*. 2019;154(6):500-508. doi:10.1001/jamasurg.2019.0096
- 68. Aso S, Matsui H, Fushimi K, Yasunaga H. Resuscitative endovascular balloon occlusion of the aorta or resuscitative thoracotomy with aortic clamping for noncompressible torso hemorrhage: A retrospective nationwide study. *J Trauma Acute Care Surg.* 2017;82(5):910-914. doi:10.1097/TA.00000000001345
- 69. Abe T, Uchida M, Nagata I, Saitoh D, Tamiya N. Resuscitative endovascular balloon occlusion of the aorta versus aortic cross clamping among patients with critical trauma: a nationwide cohort study in Japan [published correction appears in Crit Care. 2017 Feb 22;21(1):41]. *Crit Care*. 2016;20(1):400. Published 2016 Dec 15. doi:10.1186/s13054-016-1577-x
- 70. Bulger EM, Perina DG, Qasim Z, et al. Clinical use of resuscitative endovascular balloon occlusion of the aorta (REBOA) in civilian trauma systems in the USA, 2019: a joint statement from the American College of Surgeons Committee on Trauma, the American College of Emergency Physicians, the National Association of Emergency Medical Services Physicians and the National Association of Emergency Medical Technicians. *Trauma Surg Acute Care Open*. 2019;4(1):e000376. Published 2019 Sep 20. doi:10.1136/tsaco-2019-000376
- 71. Brenner ML, Moore LJ, DuBose JJ, et al. A clinical series of resuscitative endovascular balloon occlusion of the aorta for hemorrhage control and resuscitation. J Trauma Acute Care Surg. 2013;75(3):506-511. doi:10.1097/TA.0b013e31829e5416
- 72. Saito N, Matsumoto H, Yagi T, et al. Evaluation of the safety and feasibility of resuscitative endovascular balloon occlusion of the aorta. *J Trauma Acute Care Surg*. 2015;78(5):897-904. doi:10.1097/TA.00000000000614
- 73. Moore LJ, Brenner M, Kozar RA, et al. Implementation of resuscitative endovascular balloon occlusion of the aorta as an alternative to resuscitative thoracotomy for

noncompressible truncal hemorrhage. *J Trauma Acute Care Surg*. 2015;79(4):523-532. doi:10.1097/TA.00000000000809

- 74. Moore HB, Moore EE, Burlew CC, et al. Establishing Benchmarks for Resuscitation of Traumatic Circulatory Arrest: Success-to-Rescue and Survival among 1,708 Patients. J Am Coll Surg. 2016;223(1):42-50. doi:10.1016/j.jamcollsurg.2016.04.013
- 75. DuBose JJ, Scalea TM, Brenner M, et al. The AAST prospective Aortic Occlusion for Resuscitation in Trauma and Acute Care Surgery (AORTA) registry: Data on contemporary utilization and outcomes of aortic occlusion and resuscitative balloon occlusion of the aorta (REBOA). *J Trauma Acute Care Surg.* 2016;81(3):409-419. doi:10.1097/TA.00000000001079
- 76. Inoue J, Shiraishi A, Yoshiyuki A, Haruta K, Matsui H, Otomo Y. Resuscitative endovascular balloon occlusion of the aorta might be dangerous in patients with severe torso trauma: A propensity score analysis. *J Trauma Acute Care Surg.* 2016;80(4):559-567. doi:10.1097/TA.000000000000968
- 77. Manzano Nunez R, Naranjo MP, Foianini E, et al. A meta-analysis of resuscitative endovascular balloon occlusion of the aorta (REBOA) or open aortic cross-clamping by resuscitative thoracotomy in non-compressible torso hemorrhage patients. *World J Emerg Surg.* 2017;12:30. Published 2017 Jul 14. doi:10.1186/s13017-017-0142-5
- 78. Brenner M, Bulger EM, Perina DG, et al. Joint statement from the American College of Surgeons Committee on Trauma (ACS COT) and the American College of Emergency Physicians (ACEP) regarding the clinical use of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA). *Trauma Surg Acute Care Open*. 2018;3(1):e000154. Published 2018 Jan 13. doi:10.1136/tsaco-2017-000154
- 79. Otsuka H, Sato T, Sakurai K, et al. Effect of resuscitative endovascular balloon occlusion of the aorta in hemodynamically unstable patients with multiple severe torso trauma: a retrospective study. *World J Emerg Surg.* 2018;13:49. Published 2018 Oct 25. doi:10.1186/s13017-018-0210-5
- 80. Pieper A, Thony F, Brun J, et al. Resuscitative endovascular balloon occlusion of the aorta for pelvic blunt trauma and life-threatening hemorrhage: A 20-year experience in a Level I trauma center. *J Trauma Acute Care Surg.* 2018;84(3):449-453. doi:10.1097/TA.00000000001794
- 81. Sadeghi M, Nilsson KF, Larzon T, et al. The use of aortic balloon occlusion in traumatic shock: first report from the ABO trauma registry. *Eur J Trauma Emerg Surg*. 2018;44(4):491-501. doi:10.1007/s00068-017-0813-7
- 82. Sato R, Kuriyama A, Takaesu R, et al. Resuscitative endovascular balloon occlusion of the aorta performed by emergency physicians for traumatic hemorrhagic shock: a case series from Japanese emergency rooms. *Crit Care*. 2018;22(1):103. Published 2018 Apr 21. doi:10.1186/s13054-018-2032-y
- 83. Teeter WA, Bradley MJ, Romagnoli A, et al. Treatment Effect or Effective Treatment? Cardiac Compression Fraction and End-tidal Carbon Dioxide Are Higher in Patients Resuscitative Endovascular Balloon Occlusion of the Aorta Compared with Resuscitative Thoracotomy and Open-Chest Cardiac Massage. *Am Surg.* 2018;84(10):1691-1695.
- 84. Yamamoto R, Cestero RF, Suzuki M, Funabiki T, Sasaki J. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is associated with improved survival in severely injured patients: A propensity score matching analysis. *Am J Surg.* 2019;218(6):1162-1168. doi:10.1016/j.amjsurg.2019.09.007
- 85. Yamamoto R, Cestero RF, Muir MT, et al. Delays in Surgical Intervention and Temporary Hemostasis Using Resuscitative Endovascular Balloon Occlusion of the aorta (REBOA): Influence of Time to Operating Room on Mortality. *Am J Surg.* 2020;220(6):1485-1491. doi:10.1016/j.amjsurg.2020.07.017

86. Hilbert-Carius P, McGreevy DT, Abu-Zidan FM, Hörer TM; the ABOTrauma Registry research group. Pre-hospital CPR and early REBOA in trauma patients - results from the ABOTrauma Registry. *World J Emerg Surg.* 2020;15(1):23. Published 2020 Mar 30. doi:10.1186/s13017-020-00301-8

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

- 623 624
- 625

626 Appendix A. Literature classification schema.*

Design/ Therapy [†] Class		Diagnosis‡	Prognosis [§]
1 Randomized, controlled trial or meta-analysis of randomized trials		Prospective cohort using a criterion standard or meta-analysis of prospective studies	Population prospective cohort or meta-analysis of prospective studies
2	Nonrandomized trial	Retrospective observational	Retrospective cohort Case control
3	Case series	Case series	Case series

*Some designs (eg, surveys) will not fit this schema and should be assessed individually.

[†]Objective is to measure therapeutic efficacy comparing interventions.

[‡]Objective is to determine the sensitivity and specificity of diagnostic tests.

630 [§]Objective is to predict outcome, including mortality and morbidity.

631

632 **Appendix B.** Approach to downgrading strength of evidence.

633

634 635

Downgrading	1	2	3	
None	Ι	II	III	
1 level	II	III	Х	
2 levels	III	Х	Х	
Fatally flawed	Х	Х	Х	
·				

644

645 Appendix C. Likelihood ratios and number needed to treat.*

646

649

LR (+)	LR (-)	
1.0	1.0	Does not change pretest probability
1-5	0.5–1	Minimally changes pretest probability
10	0.1	May be diagnostic if the result is concordant with
		pretest probability
20	0.05	Usually diagnostic
100	0.01	Almost always diagnostic even in the setting of low or
		high pretest probability

LR, likelihood ratio.*Number needed to

*Number needed to treat (NNT): number of patients who need to be treated to achieve 1

additional good outcome; NNT=1/absolute risk reduction×100, where absolute risk reduction is the risk difference between 2 event rates (ie, experimental and control groups).

Appendix D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagrams.⁷

Evidentiary Table. 796

707	
191	

Author & Year Published	Class of Evidence	Setting & Study Design	Methods & Outcome Measures	Results	Limitations & Comments
Ahmed et al ¹⁹ (2020)	III for Q 2	Retrospective review of NTDB Also - multivariate logistic regression model on clinical variables related to patient mortality - ROC curve was fit and area under the curve (AUC) with sensitivity analysis	Patients ground level from home, ≥65 years with normal (SBP) [Ref 90 –160 mm Hg], heart rate (HR) [Ref: 60-100,GCS 15 Other variables: sex, race and ethnicity, respiratory rate (RR), injury severity score (ISS), existing comorbidities including: smoking, chronic kidney disease (CKD), cerebrovascular accident/neurologic deficit (CVA), DM, HTN Objective: to determine incidence of in-hospital mortality and develop validated risk model to identify high risk	40,800 patients; 938 (2.3%) patients died in the hospital; 39,862 (97.7%) survived Significant difference based on: Age (median [IQR]) (82.0 [77.0, 86.0], vs. 80.0 [73.0, 85.0], P <.001) Sex (male: 49.8% vs. 30.6%, P <.001) ISS (median [IQR]: 9.0 [9.0, 14.0] vs 9.0 [4.0, 9.0], P <.001) Sensitivity analysis showed higher rate of comorbidities, including chronic kidney disease (CKD) and HTN), (7.5% vs. 2.8%, and 67.3% vs. 62.5%, all P <.05). Tested model for higher LOC (trauma center designation I & II) versus lower level and impact on mortality; none were found.	Brain injury-most frequent injury found (21.86% vs 21.48%) Higher brain hemorrhage and cervical spine injury in group that died Femoral neck or intertrochanteric fractures - no difference between groups Normal physiological measures at the scene do not eliminate the risk of in-hospital mortality in geriatric patients who fell from a ground level height at home 2.3% incidence of in- hospital mortality Older age, male sex, lower SBP, higher HR, and RR, ISS, and a history of CKD, DM, and HTN requiring medications were associated with a higher risk of in-hospital mortality

Anantha et al ³² (2021)	III for Q 2	Single-center retrospective Multivariable logistic regression analysis done to identify predictors of appropriate triage and variables independently associated with appropriate triage	Included all (ISS >15), \geq 65 years (between1/14 and 9/17). Undertriage: lack of TTA despite presence of severe injuries. Primary outcome: in- hospital mortality; secondary outcomes: mortality within 48 hours of admission and urgent hemorrhage control or shock(need for transfusion, or lactate being \geq 4.0 mmol/L.	1039 patients, 628 (61%) did not undergo TTA. Undertriaged patients were older, had more comorbidities (stroke, dementia and bleeding disorders) In-hospital mortality was 5% vs 31% (P <.0001) 1% of undertriaged patients needed urgent hemorrhage control, vs to 6% appropriately triaged group (P < .0001) 1% undertriaged patients died within 48 hours vs 19% appropriately triaged group (P < .0001) Predictors of appropriate triage: GCS, heart rate, systolic blood pressure, lactic acid, ISS, shock, and absence of dementia, stroke, or alcoholism	Utility of ISS Retrospectively collected variable may not useful for triage
Brown et al ³¹ (2015)	III for Q 2	Retrospective review- Data extraction National trauma data bank	Used SBP of 110 mm Hg instead of 90 mm Hg to determine if geriatric pts (greater then 65) have mortality rates similar to those with lower BP Used physiologic (prehospital VS, GCS) and anatomic criteria (from ICD 9 codes) to determine placement into trauma center Trauma center need based on ISS greater then 15, ICU	 438,828 geriatric pts Geriatric patients newly triaged with SBP 90 to 109 mm Hg odds of mortality same as those with SBP less the 90 mm Hg (Adjusted OR 1.03 ;95% CI) Also had similar discrimination and better goodness of fit using SBP <110 and those with SBP range (90 -109 mm Hg) had odds of mortality similar to those with SBP < 90 (Adjusted OR1.02 95CI%) Using SBP of less then 110 mm Hg for trauma center improves undertriage in geriatric pts but not in adults. It improves sensitivity at the expense of specificity. 	Majority of patients were adults, not geriatric; however still large number of geriatric patients. Conclusion that older people with BP of 109 - 90 have same mortality as those with Bp of 90 mm Hg suggests they warrant trauma center care

			admission, urgent surgery and death as primary outcome. Mortality was	Characteristics of the Geriatric and Adult Cohorts	Geriatric Cohort n = 438,828	Adult Cohort n = 1,117,116	P	
			secondary outcome	Age, median (IQR), y	80 (73– 86)	37 (25– 50)	< 0.01	
				Sex, male, %	39	71	< 0.01	
				Blunt injury, %	99	85	< 0.01	
				Prehospital time, median (IOR)	48 (37– 70)	44 (32– 67)	< 0.01	
				Prehospital SBP, median (IQR)	144 (128– 164)	131 (118– 146)	<0.01	
				Prehospital SBP < 90 mm Hg, %	2.7	5.3	< 0.01	
				Prehospital SBP < 110 mm Hg, %	9.0	15.5	< 0.01	
				ISS, median (IOR)	9 (4–10)	6 (4–13)	< 0.01	
				TCN, %	32	40	< 0.01	
				Mortality, %	4.4	3.8	< 0.01	
Hung et al ³³ (2018)	III for Q2	10 year single center cohort	Patients ≥55 years in trauma registry	2218 patients 3 for aged 55-70	30-day mo) years and	rtality was 17.7% for	7.5% above	TTA is tiered. First tier: 2 EM physicians.
		study –	Separated ages 55-70,	70 years.				Second tier: 2 general
		retrospective	and >70years.	The under-tria	ge rate was	s 59% for a	age 55	surgeons, an orthopaedic
		review trauma	Outcomes: death	-70 years, and above 70 years	69.1% for	those ageo	1	surgeon, and an ICU
		Kong 2006 to	need for surgery.	above /0 years	5.			physician.
		2015	or the need for ICU					Sensitivity of TTA
		-	care					criteria decreases as age
								increases- Justifies need

					for specific criteria for pts 70 years and older.
Ichwan et al ³⁰ (2015)	III for Q 2	Retrospective review of Ohio trauma registry	Used greater than 70 years of age to define geriatrics Triage criteria predicted need for trauma care	Geriatric triage criteria applied increased sensitivity but not specificity Mortality was similar between 2 groups 6.8 (adult) vs 9.3 (geriatric Appeared geriatric patients were less severely injured (lower ISS, lower ICU care) but mortality rate 6.8 in geriatrics vs 9.3 in adults Increased geriatric trauma from 42 to 57% Sensitivity increased (61 to 93%) but specificity decreased (61 to 49%) have CI	Use of geriatric trauma criteria improved sensitivity of identifying need for trauma center
Lim et al ²⁹ (2020)	III for Q2	Retrospective cohort from 1/2016 to 12/ 2017	All patients > 18 years with injury severity score ≥16) Goal was to validate Korean Trauma Activation (KTAS) Score which has 4 levels and to analyze the prognostic performances of KTAS in 30-day	827 patients, 30-day mortality observed in 14.9% (n=123). Patients in the survivor group were younger and had higher values of both ISS and shock index. Survivors (n=704) Age (years) 59.1 (46.1–72.0) Non-survivors (n=123) Age (years) 69.1 (57.0–76.1)	Mortality of older adult was increased by 2.7 % for each year of life
Brown et al ⁶² (2012)	III for Q 3	multicenter prospective cohort study of adults , 7 institutions during a 8-year period (2003 to 2010)	Inclusion criteria: blunt trauma, presence of prehospital or emergency department hypotension (systolic blood pressure [SBP] <90 mm Hg) or an elevated base deficit (BD) (>6 mEq/L),	Of the 1,961 subjects in the cohort, 604 met MT inclu- sion criteria and constituted the study cohort. For the entire cohort, the 6-, 12-, and 24-hour mortality was 8.6%, 12.1%, and 13.1%, respectively. These subjects required a median of 16.3 U (IQR, 12.5 \pm 25.7) of PRBC, 8.3 U (4.3 \pm 13.4) of FFP, and 1.5 U (0.67 \pm 2.5) of PLT during the first 24 hours. Overall,	Despite similar degrees of early shock and coagulopathy, high FFP/PRBC and PLT/PRBC ratios are associated with a survival benefit as early as 6 hours and throughout the first 24

Reynolds et	III for Q	multicenter	blood transfusion requirement within the first 12 hours, and any body region exclusive of the brain with an AIS of 2 or higher, allowing exclusion of patients with isolated traumatic brain injury. Patients younger than 18 years or older than 90 years and those with cervical spinal cord injury were also excluded from enrollment. High FFP/PRBC (≥1:1.5) and PLT/PRBC (≥1:9) ratios at 6, 12, and 24 hours were compared with low ratio groups. MOD was outcome	 55.3% developed MOF, 48.2% developed NI, and 29.8% developed ARDS. A high FFP/PRBC ratio at 6 hours was associated with an independent mortality reduction at 6, 12, and 24 hours .Similarly, a high FFP/PRBC ratio at 12 hours was associated with an independent mortality reduction at 12 hours and 24 hours, and a high ratio at 24 hours was associated with a mortality benefit at 24 hours When FFP/PRBC ratio was analyzed as a time-dependent covariate, a higher ratio was associated with an independent reduction in mortality (Table 3). Similarly, when PLT/PRBC ratio was analyzed as a time-dependent covariate, a higher ratio was associated with an independent reduction in mortality (Table 3). Similarly, when PLT/PRBC ratio was analyzed as a time-dependent covariate, a higher ratio was associated with an independent reduction in mortality (Table 3). Similarly, when PLT/PRBC ratio was analyzed as a time-dependent covariate, a higher ratio was associated with an independent reduction in mort A high ratio of FFP/PRBC or PLT/PRBC at 6 hours was not independently associated with the risk of developing MOF, NI, or ARDS during admission. Similarly, a high FFP/ PRBC or PLT/PRBC ratio at 12 hours or 24 hours was not associated with any complication outcome studied (p <0.05 	hours. Moreover, this held true at all time points at which ratio groups were determined. Most importantly, when FFP and PLT to PRBC ratios were analyzed as time-dependent variables, an increasing ratio was independently associated with a mortality reduction during the first 24 hours from injury. early resuscitation using high FFP/PRBC and PLT/PRBC ratios results in reduced mortality at 6 hours and throughout the first 24 hours from injury. When time- dependent effects of early component transfusion are accounted for, an increasing FFP/PRBC and PLT/PRBC ratio remains protective against early death from hemorrhage.
al ⁶³	3	prospective	trauma, presence of	enrolled during the study period, 604	hypothermia, nadir
(2012)		cohort study of	prehospital or	(31%) required 10 U or more of PRBCs in	temperatures lower than

adults with	emergency department	the first 24 hours after injury and	34-C in the first 24
blunt injury	systolic hypotension	constituted the primary study population.	hours, is common and
with	(<90 mm Hg) or an		independently associated
hemorrhagic	elevated base deficit	Regression analysis revealed that	with a greater
shock	(<6 mEq/L), blood	temperature in an MT co- hort (lowest 24-	independent risk of
	transfusion	hour measurement as a continuous	mortality of more than
7 institutions	requirement within the	variable) was associated with a	85% on patients
during a 6-year	first 12 hours, and any	significantly greater independent risk of	requiring MT. These
period	region of the body	mortality after controlling for differences	associations were most
(December	excluding the brain	in demographics, injury severity, shock	robust on patients who
2003 -January	with an Abbreviated	parameters, and transfusion and resus-	received a low
2010)	Injury Scale score of 2	citation confounders (OR, 0.82; 95% CI,	FFP/PRBC transfusion
)	or higher, allowing the	0.7Y0.9; p = 0.013). An interpretation of	ratio and were negated
	exclusion of patients	this OR suggests that a greater indepen-	in the recent enrollment
	with isolated traumatic	dent risk of mortality of more than 18% is	period (2007-2010) in
	brain injury. Patients	associated with every decrease in the	which a more aggressive
	younger than 16 years	temperature level (-C) of a patient	blood component
	or older than 90 years	requiring MT in the first 24 hours after	resuscitation strategy has
	and those with cervical	injury.	been previously
	spinal cord injury were	5.5	documented. These data
	also excluded from	When stratified by the period of	suggest that the clinical
	enrolment.	enrollment, a tem- perature lower than 34-	significance of
		C remained a significant independent	hypothermia may be
	For the current	predictor of mortality with more than a	affected by the way a
	secondary data	twofold higher risk of mortality in the	patient is resuscitated
	analysis, only patients	early period (OR. 2.24: 95% CI. 1.2Y4.1:	and may be as important
	requiring MT, defined	p = 0.012.	as addressing the early
	as 10 U or more of		coagulopathy in these
	packed red blood cells	When stratified by the attainment of a high	patients
	(PRBCs) in the first 24	FFP/PRBC transfusion ratio (>1.2) in the	_
	hours after injury, were	first 24 hours versus a low FFP/ PRBC	
	selected for analysis.	transfusion ratio (<1.2) a temperature	
	·	lower than 34-C remained a significant	
	Our primary outcomes	independent predictor of mortality in the	
	for the analysis were	low FFP/PRBC ratio group with more than	
	in-hospital mortality.	a twofold higher risk of mortality (OR.	
	1 37	a concrete inglice tible of increasing (orig	

			MOF development, and nosocomial infection (NI).	2.2; 95% CI, 1.1 ± 4.2 ; p = 0.021, In those patients requiring MT who received a high FFP/PRBC transfusion ratio, a temperature lower than 34-C was no longer a significant independent risk factor for mortality (OR, 1.8; 95% CI, 0.933.5; p = 0.100).	
Hagiwara et al ⁶⁴ (2016)	III for Q 3	Retrospective observational study, Fifteen medical institutions participated from Japan, subgroup study from the Japanese Observational Study for Coagulation and Thrombolysis in Early Trauma (J-OCTET) January and December 2012	189 blunt trauma patients ≥ 18 years with ISS ≥16 requiring RBC transfusions within the first 24 h. cut-off values of the FFP/RBC ratio for outcome. cut-off values of the FFP/RBC ratio for outcome.	A total of 139 blunt trauma patients survived and were discharged alive, and 62 blunt trauma patients died FFP/RBC ratio at 6 h for survivor 1.0 [0.5, 1.3] vs 0.8[0.6,1.0], P = 0.066 FFP/RBC ratio at 24 h for survivor 1.0 [0.6, 1.3] vs 0.83[0.6,1.1], P = 0.177 Cox proportional hazards analysis of time to death FFP/RBC ratio \geq 1 within 6 h 0.29 (0.14 – 0.62) P =0.001 FFP/RBC ratio \geq 1 within 24 h 1.27 (0.59 – 2.74) P=0.540	Blunt trauma patients transfused with an FFP/RBC ratio ≥ 1 within the first 6 h after admission had a hazard ratio of about 0.4. In other words, their risk of death was reduced by about 60%. Transfusion of an FFP/RBC ratio $\Box 1$ within the first 6 h was associated with the outcome of severe blunt trauma patients with ISS ≥ 16 and needed a transfusion within 24 h. The present results suggest that early aggressive administration of FFP may be crucial for resuscitation in patients with severe blunt trauma

Holcomb et	III for Q	Pragmatic,	Inclusion criteria:	No significant differences in mortality	Transfusing patients
$al^{0.5}$	3	phase 3,	patient having at least 1	were detected at 24 hours (12.7%) in the	based on an empirical
(2015)		multisite,	U of any blood	1:1:1 group VS 1/.0% in the 1:1:2 group;	ratio rather than guided
		clinical trial at	prior to hospital arrival	1.1% or at 30 days (22.4% vs 26.1%)	data (goal directed) is
		12 Javel I	or within 1 hour of	1.170) of at 50 days (22.470 vs 20.170, respectively: difference -3.706 [05%	data (goal-directed) is
		trauma centers	admission and	CI = 10.2% to 2.7%) range of intent-to-	by some researchers
		in	prediction by an	treat P values computed for all	This trial was
		North America	Assessment of Blood	possible combinations of 30-day outcomes	not designed to study
		August 2012	Consumption score of	for the 4 patients with missing values did	this question. However.
		and December	2 or greater or by	not change these results.	after the controlled,
		2013	physician judgment of		ratio-driven intervention
			the need for a massive	Exsanguination, the predominant cause of	was completed,
			transfusion (defined	death within the first 24 hours, was	clinicians treated
			as =10 U of RBCs	decreased in the 1:1:1 group (9.2%) vs the	patients based on local
			within 24 hours	1:1:2 group (14.6%) (difference, -5.4%	laboratory-guided
				[95% CI, -10.4% to -0.5%], P=.03); the	standard-of-
			Exclusion: Received a	median time to death due to	care practice. It appears
			lifesaving intervention	exsanguination was 106	that laboratory-directed
			from an outside	minutes (interquartile range [IQR], 54 to	catching up occurred in
			hospital or health care	198 minutes) and 96 minutes (IQR, 43 to	the 1:1:2 group
			facility, Had	194 minutes), respectively. From 24 hours	with plasma and
			devastating injuries and	through 30 days, the numbers of additional	platelets approaching a
			expected to die within	all-cause deaths were similar (32 for the	cumulative ratio of
			1 nour of admission	1:1:1 group vs 31 for the 1:1:2 group).	1:1:1. Other studies have
			brain injury) Directly	to excanguination occurred in 10.7% of	with laboratory directed
			admitted from a	10 casangumation occurred in 10.770 of	resuscitation This
			correctional facility	1.1.2 group whereas deaths due to	catching up after the
			Required a	traumatic brain injury were 8.1% vs	completion of
			thoracotomy prior to		randomized blood

receiving randomized	10.3%, respectively. Additional causes of	product transfusion may
blood products in the	death were infrequent	have decreased the
emergency department,	More patients achieved anatomic	ability to
Younger than 15 years	hemostasis in the 1:1:1 group (86.1% vs	detect differences in
or weighed less than 50	78.1% in the 1:1:2 group, P= .006) with a	mortality at 24 hours and
kg if age unknown,	median time of 105 minutes (IQR, 64 to	30 days or in the
Known pregnancy in	179 minutes) vs 100 minutes (IQR, 56 to	prespecified ancillary
the emergency	181 minutes),	outcomes
department, Had burns	respectively $(P=.44)$ in those who	
covering greater than	achieved anatomic hemostasis	Limitations include
20% total body surface		power to detect
area Suspected	During the intervention, patients received	differences smaller than
inhalation injury,	median ratios of plasma to RBCs of 1.0 in	the effect size we
Received greater than 5	the 1:1:1 group and 0.5 in the 1:1:2 group.	considered to be both
consecutive minutes of	The median ratios of platelets to RBCs	clinically meaningful
cardiopulmonary	during the intervention were 1.5 for the	and affordable to study
resuscitation	1:1:1 group and 0.4 for the 1:1:2 group.	when we designed the
(with chest		trial.
compressions) prior to		
arriving at the hospital		
or within the		
emergency department,		
Known do-not-		
resuscitate order prior		
to randomization,		
Enrolled in a		
concurrent, ongoing,		
interventional,		
randomized clinical		
trial, Activated the opt-		
out process for the		
PROPPR trial (usually		
by wearing a bracelet		
given out at a		
community consent		
presentation), More		

			than 3 U of red blood cells given before randomization primary outcome: 24 hour and 30 day mortality		
Sperry et al ⁶⁶ (2008)	III for Q 3	multicenter prospective cohort study evaluating clinical outcomes in blunt injured adults with hemorrhagic shock seven US institutions, during a 3.5- year period (November 2003–March 2007)	Included :blunt mechanism of injury, presence of prehos- pital or emergency department systolic hypotension (<90 mm Hg) or an elevated base deficit (≥6 meq/L), blood transfusion requirement within the first 12 hours, and any body region exclusive of the brain with an abbreviated injury score (AIS) ≥2, allowing exclusion of patients with isolated traumatic brain injury. Patients younger than 16 years or older than 90 years and those with cervical spinal cord injury were excluded. For the current study	high F:P ratio , n-102, low F:P ratio , n= 313. Of the 1,036 blunt injured patients enrolled during the study period, 415 patients had a blood transfusion requirement of \geq 8 units within the initial 12 hours after injury, and constituted the study population. In this cohort, 39 patients received no FFP within the first 12 hours from injury (FFP: PRBC ratio = 0) despite having a \geq 8 unit blood transfusion requirement. The overall mortality for the study population was 33.5%, whereas the overall complication rates for MOF, NI, and ARDS were 56.4%, 46.5%, and 29.6%, respectively. Those who received a high F:P ratio had higher ISS score and extremity AIS scores, higher APACHE II scores, lower GCS scores, and had lower nadir core body temperature measurements in the first 24 hours postinjury. They also had greater length of stay, ICU, and ventilator requirements; however, these comparisons would be inaccurate if an early mortality	patients who received an FFP:PRBC transfusion ratio $\geq 1:1.5$, relative to patients who received <1:1.51 FFP:PRBC ratio, had a significant lower risk of in-hospital mortality following massive transfusion after controlling for important confounders. This protective effect was most pertinent for mortality within the first 48 hours after injury and was independent of the blood transfusion requirement each individual patient received. Although crude mortality differences between the high F:P and low F:P groups did not reach statistical significance, the significant difference in early (24 hour)

 		-	
	only patients who required ≥ 8 units of PRBCs within the first 12 hours from injury were included in the analysis. The FFP:PRBC variable, specifically the low F:P group, was then categorized as 1:2 (1:1.51–1:2.50, n = 105), 1:3 to 4 (1:2.51– 1:4:50, n = 111), and $\leq 1:5 (\leq 1:4.51, n = 97)$ groups , MOF and mortality were outcomes	difference existed between the two groups. Hospital free days, ICU free days, and ventilator free days were compared with adjust for any such difference and confirmed that high F:P ratio patients had fewer hospital, ICU, and ventilator free days. Although the survival curves overall were not statistically different (log- rank: $p =$ 0.119), the mortality rate at day 1 postinjury was significantly lower in the high F:P group (3.9% vs. 12.8%, $p \square$ 0.012). Although underpowered to be statistically different, when the FFP:PRBC variable was stratified into groups(highF:P,1:2,1:3–4,and≤1:5),similar findings with early separation of the survival curves are apparent at day 1 postinjury, with a dose response being demonstrated, based on the transfused FFP:PRBC ratio high F:P ratio, relative to patients who received a low F:P ratio, was independently associated with a 52% lower risk of mortality (HR 0.48, $p =$ 0.002, 95% CI 0.3–0.8), after controlling for important confounders. The hazard ratio for high F:P ratio patients remained significant with the protective effect for mortality being unaltered (HR 0.57, $n = 0.026$, 05% (Cl 0.35–0.92)	mortality was likely responsible for this overall mortality risk reduction. As the FFP:PRBC ratio became smaller (less FFP relative to PRBCs) a dose-response relationship was demonstrated for mortality, with those patients who received minimal or no FFP having the highest early mortality.
		effect for mortality being unaltered (HR $0.57, p = 0.026, 95\%$ CI $0.35-0.93$).	

				Harrison a high E.D antis man associated	
				However, a high F.P ratio was associated	
				with almost a twofold nigher risk of	
				ARDS, after controlling for important	
				confounders	
				study is a secondary analysis of a	
				prospective cohort study looking at the	
				genomic and proteomic response after	
				severe injury and hemorrhagic shock	
A == = = 168	III fan O	Detre an estive	Turner a stiente mith	250 motionts total	Detus an estima De sistera
Aso et al (2017)	$\frac{111}{4}$ Ior Q	Calcut of	Trauma patients with		Starday Data and angita
(2017)	4	Conort of	uncontrolled	• 191 REBOA, 68 Resuscitative	Study. But propensity
		national	hemorrhagic shock.	Thoracotomy (RT)	score adjusted.
		Inpatient	Excluded penetrating	Propensity score adjusted Cox Regression:	
		Database	thoracic trauma. > 15	Hazards ratio = $0.94 (95\% \text{ CI } 0.60, 1.48)$	
		(Japan) 2010-	years old.		
		2014.	Propensity score	No difference in secondary outcomes	
			adjusted		
			Outcome: Mortality		
			2ndary ventilator-free		
			days, total amount of		
			fluid within 1 day, total		
			transfusion within 1		

			day, total hospitalization costs.		
Joseph et al ⁶⁷	III for Q	Case Control	Case-control Study	420 REBOA cases matched 280 controls	
2019	4		using ACS TQIP	50/240 = 35.7%	
		US single		53/180 = 18.9%	
		center			