Treating tPA-Associated ICH

Joshua N. Goldstein
Presenter

Joshua N. Goldstein, MD, PhD

Disclosures

- I have received research funding from Pfizer, Portola, and Octapharma, and consulting from CSL Behring, Octapharma, Phillips, Portola, and NControl.
Outline

- Alteplase (tPA)
- tPA-Associated ICH – Not all the same
- Is there something to reverse?
- Options for treatment
- Supportive care

Yaghi S et al, Stroke 2017
tPA

- Tissue plasminogen activator
- Catalyzes the conversion of plasminogen to plasmin
- Recombinant products
 - Alteplase
 - Retevase
 - Tenecteplase

How long does it last?

- **Alteplase**: Given as IV bolus then 1 hour infusion.

 - Half life = 5-10 minutes.

 - After the end of infusion:
 - Approximately 50% cleared within 5 minutes.
 - Approximately 80% cleared within 10 minutes.

- **Tenecteplase** half life: 20 minutes.
Effects of tPA

- Fibrinogen degradation – reduced fibrinogen!
- Fibrinogen degradation products are created

Matosevic B et al, Neurology 2013
Effects of tPA last longer than the drug itself

Matosevic B et al, Neurology 2013
Coagulopathy and tpa-ICH

- More severe coagulopathy may be associated with higher ICH risk
- Reduction in fibrinogen and increased FDPs are also associated with increased risk of sICH.
- Hypofibrinogenemia (fibrinogen<200 mg/dL) is associated with increased risk.
- Goal of treatment: Treat coagulopathy (rather than “reverse” tPA).

Yaghi S. et al, Stroke 2017
When does post tPA sICH occur?

- Of those who will develop this, it will happen:
 - Within 12 hours in 65-80% of patients
 - Within 12-24 hours in 15-20% of patients
 - Within 24-48 hours in <10% of patients
Is all ICH the same after tPA?

- This shows 4 different types:
 - HI (Hemorrhagic infarct) 1 = small petechiae
 - HI2 = confluent petechiae
 - PH1 (parenchymal hemorrhage) = <30% of the infarcted area
 - PH2 = >30% of the infarcted area with significant space-occupying effect, or clot remote from infarcted area.

- Only PH2 is probably worse for the patient
- HOWEVER: can we prevent the small ones from becoming large?

Fiorelli et al, Stroke 1999;30:2280-2284
Do patients have ongoing bleeding after sICH?

- Yes - up to 40% can have further bleeding.

- Example: This was a 56 year old male with left sided weakness who received tPA for stroke

Goldstein JN et al, Arch Neurol 2010
Conclusions

- The half-life of tPA is so short that you can’t specifically “reverse” it.
- However, the impact of tPA on the coagulation system can last 24 hours.
 - And, many people have ongoing bleeding after tpa-ICH diagnosis.
- Therefore, there is probably a window of opportunity to improve hemostasis, and maybe minimize further bleeding.
- Do we have any tools to do this?
- Are there any clinical trials?
First question- whether to “do” anything

- Are there some people with tPA ICH who could benefit from procoagulant treatment and some who cannot? How to know?
- Should we use risk of ongoing expansion?
 - Patients with preexisting (or current) coagulopathy are highest risk
- Should we use opportunity to benefit?
 - Small ICH
 - Don’t treat: Lower risk of ongoing bleeding, unclear clinical relevance, concern for thromboembolism
 - Do treat: Large opportunity to benefit? This is the chance to stop a small bleed from becoming a large bleed!
 - Large ICH
 - Don’t treat: The damage is done – low opportunity to benefit
 - Do treat: High risk of expansion, opportunity to prevent this.
Second question- how to treat tPA-associated coagulopathy

- There are no clinical trials or high quality large multicenter studies.
- This event is so rare that there are only small single center observational studies.
- Guidance is based on expert opinion
 - (Stroke, 2017).
Options for treatment

- 1. Cryoprecipitate
- 2. Antifibrinolytics
 - Aminocaproic acid (Amicar), tranexamic acid
- 3. Platelets
- 4. Fresh frozen plasma (FFP)
- 5. Prothrombin Complex Concentrate (PCC; Kcentra most commonly in the US)
- 6. Factor VIIa (NovoSeven).
Options for treatment

Yaghi S et al, Stroke 2017
Cryoprecipitate

- Derived from Fresh Frozen Plasma (FFP)
- Contains Fibrinogen!!!!
 - (plus other components of coagulation cascade)
- Options:
 - 1. Administer 10 units empirically
 - Treat presumed hypofibrinogenemia
 - 2. Stat check fibrinogen level
 - Provide cryoprecipitate as needed to treat hypofibrinogenemia
 - Goal fibrinogen >150mg/dL
- Risks:
 - Transfusion reaction, thromboembolic events

From UTMB

AHA Scientific Statement: Yaghi S et al, Stroke 2017
Antifibrinolytics

- These inhibit plasmin.
- Prevent it from binding to fibrin and dissolving it.
- Therefore, they prevent plasmin from dissolving clots.
- Since alteplase acts by converting plasminogen to plasmin, increasing plasmin levels, these are the most obvious "anti tPA" agents.

From: Peripheral Brain, https://pbrainmd.wordpress.com/2015/10/15/1335/
Antifibrinolytics

- Aminocaproic acid (Amicar)
 - Common options:
 - 5g IV bolus
 - 4g IV, then 1g/hour for 8 hours
- Tranexamic acid (TXA)
 - Common dosing: 10mg/kg
- Risks: Thromboembolism
Platelets

- Thrombolysis may lead to platelet inhibition
- Some authorities recommend platelet transfusion to treat this.
 - For patients with thrombocytopenia, platelet transfusion is recommended
 - Otherwise, consider if platelet dysfunction is suspected
 - Consider 8-10 Units
- Risks: Volume overload, transfusion reaction, thromboembolic events
Prothrombin Complex Concentrates

- Concentrate of vitamin K dependent coagulation factors (II, VII, IX, X), protein C and protein S.
- May help active both intrinsic and extrinsic pathways, facilitated conversion of fibrinogen to fibrin.
- May need to replenish fibrinogen first to provide substrate.
- For patients who were on warfarin (coumadin) prior to t-PA, PCC is an excellent choice to restore hemostasis.
- Risks: thromboembolic events
Fresh Frozen Plasma (FFP)

- Plasma collected from donors
- Contains all major components of the coagulation cascade
- Large volume, is limited in rate it can be transfused.
- Consider for those on warfarin prior to tPA, if PCCs are not available.
- Risks: Volume overload, transfusion reaction
Recombinant activated factor VIIa

- Brand name: NovoSeven
- Activates the coagulation system and promotes hemostasis
- Shown to reduce hematoma expansion in patients with spontaneous ICH (not tPA related)
- Sometimes used off label for multiple types of coagulopathy
- Risk of thromboembolism
Conclusion: Options to treat coagulopathy

- The agents with the most theoretical support:
 - Cryoprecipitate if fibrinogen is low
 - Antifibrinolytics (aminocaproic acid or tranexamic acid)
Supportive care

How else can we treat sICH:

- Blood pressure lowering
 - Some evidence from spontaneous ICH that goal SBP<140 can reduce risk in that disease, though unclear if clinically relevant
 - Also, concern for hypoperfusion in the setting of ischemic stroke

- Anticoagulation reversal
 - If the patient was anticoagulated prior to t-PA administration

- Surgical ICH evacuation
 - There are minimal data in this setting
 - Consider for cerebellar ICH, for mass effect, for ongoing neurologic deterioration
Question
Thank You