

1 **Clinical Policy: Critical Issues Related to Opioids in Adult Patients Presenting to the Emergency**
2 **Department**

3 **This DRAFT is EMBARGOED – Not for Distribution**

6 From the American College of Emergency Physicians Clinical Policies Subcommittee (Writing Committee) on
7 Opioids:

9 Benjamin W. Hatten, MD, MPH (Subcommittee Chair)

10 Stephen V. Cantrill, MD

11 Jeffrey S. Dubin, MD, MBA

12 Eric M. Ketcham, MD

13 Daniel P. Runde, MD

14 Stephen P. Wall, MD, MSc, MAEd (Methodologist)

15 Stephen J. Wolf, MD (Committee Chair)

17 Members of the American College of Emergency Physicians Clinical Policies Committee (Oversight Committee):

19 Stephen J. Wolf, MD (Chair 2018-2020)

20 Richard Byyny, MD, MSc (Methodologist)

21 Christopher R. Carpenter, MD, MSc

22 Deborah B. Diercks, MD, MSc

23 Seth R. Gemme, MD

24 Charles J. Gerardo, MD, MHS

25 Steven A. Godwin, MD

26 Sigrid A. Hahn, MD, MPH

27 Benjamin W. Hatten, MD, MPH

28 Jason S. Haukoos, MD, MSc (Methodologist)

29 Sean M. Hickey, MD (EMRA Representative 2019-2020)

30 Amy Kaji, MD, MPH, PhD (Methodologist)

31 Heemun Kwok, MD, MS (Methodologist)

32 Bruce M. Lo, MD, MBA, RDMS

33 Sharon E. Mace, MD

34 Devorah J. Nazarian, MD

35 Susan B. Promes, MD, MBA

36 Kaushal H. Shah, MD

37 Richard D. Shih, MD

38 Scott M. Silvers, MD

39 Michael D. Smith, MD, MBA

40 Molly E. W. Thiessen, MD

41 Christian A. Tomaszewski, MD, MS, MBA

42 Jonathan H. Valente, MD

43 Stephen P. Wall, MD, MSc, MAEd (Methodologist)

44 Justin Winger, PhD, MA, BSN, BA, RN, PHN (ENA Representative 2019-2020)

45 Stephen V. Cantrill, MD (Liaison with Quality and Patient Safety Committee, and E-QUAL Steering Committee)

46 Jon Mark Hirshon, MD, PhD, MPH (Board Liaison 2016-2020)

47 Mandie Mims, MLS, Staff Liaison, Clinical Policies Committee

48 Travis Schulz, MLS, AHIP, Staff Liaison, Clinical Policies Committee

49 Rhonda R. Whitson, RHIA, Staff Liaison, Clinical Policies Committee and Subcommittee Revising the
50 Opioid Clinical Policy

51

52

53

54 **ABSTRACT**

55
56 This clinical policy from the American College of Emergency Physicians addresses key issues in opioid
57 management in adult patients presenting to the emergency department. A writing subcommittee conducted a
58 systematic review of the literature to derive evidence-based recommendations to answer the following clinical
59 questions: (1) In adult patients experiencing opioid withdrawal, is emergency department administered
60 buprenorphine as effective for the management of opioid withdrawal compared with alternative
61 management strategies? (2) In adult patients experiencing an acute painful condition, do the benefits of
62 prescribing a short course of opioids on discharge from the emergency department outweigh the potential harms?
63 (3) In adult patients with an acute exacerbation of noncancer chronic pain, do the benefits of prescribing
64 a short course of opioids on discharge from the emergency department outweigh the potential harms? (4)
65 In adult patients with an acute episode of pain being discharged from the emergency department, do the
66 harms of a short concomitant course of opioids and muscle relaxants/sedative-hypnotics outweigh the
67 benefits? Evidence was graded and recommendations were made based on the strength of the available
68 data.

69

70 **INTRODUCTION**

71 Opioids are synthetic or naturally occurring substances that stimulate opioid receptors in humans. Activity
72 at the mu opioid receptor is responsible for desired effects of both euphoria and analgesia along with negative
73 effects such as respiratory depression. Depending on the specific opioid administered and degree of tolerance in
74 the user, the therapeutic window may be very narrow with the clinical consequence that exposure to even small
75 amounts of potent opioids (eg, fentanyl) is sufficient to cause respiratory depression and death. Additional adverse
76 effects include sedation, nausea, constipation, and rapid tolerance with physical dependence.

77 Over the past decade, drug-related deaths have surpassed motor vehicle crashes as the leading cause of
78 injury-related death in adults in the US.¹ The percentage of deaths related to opioids increased 292% between
79 2001 and 2016.² Within some demographic groups, opioids represent a leading cause of death; for those 24 to 35
80 years of age, opioids caused 20% of deaths.² In this age group, drug induced death was the leading cause of death,

81 exceeding motor vehicle crashes, firearms, cardiovascular disease, and neoplasm.³ The rate of increase was
82 initially correlated with availability of prescription opioids. However, as the medical community has become
83 more aware of the consequences of opioid availability, the rate of increase in prescriptions has slowed or
84 stopped.⁴ Unfortunately, deaths have not slowed, as cheap and widely available heroin appears to have replaced
85 prescription opioids for many opioid users.^{5,6} Contamination of heroin with fentanyl appears to be driving the
86 death rate even higher.⁷

87 Between 2001 to 2010, emergency department (ED) visits where opioids were administered or prescribed
88 increased from 20.8% to 31.0%.⁸ This correlated with a broader shift toward opioid based pain management in the
89 larger community of medicine and was not an issue unique to Emergency Medicine. However, trends in ED
90 opioid prescribing appear to have stabilized and may have peaked.⁹ In 2012, a cross sectional study of discharged
91 patients in 19 Emergency Departments revealed that 17% of ED visits resulted in an opioid prescription during
92 the week studied.¹⁰ This represented 4.4% of all opioid prescriptions in the US healthcare system in that year,
93 down from 7.4% in 1996.¹¹ Despite serving as a minor source of opioids within the healthcare system, liberal ED
94 opioid prescribing has been linked to problem use, dependence, and opioid-related death.^{12,13} Consequently, the
95 true relationship between ED opioid prescribing and the opioid epidemic remains unclear.

96 Nevertheless, the burden of managing this problem is increasingly falling on emergency physicians, with
97 a rising rate of substance use related visits in the US.¹⁴ Emergency physicians are on the front lines, regularly
98 treating opioid overdoses and other adverse effects such as injection drug-related complications, drug dependence,
99 and opioid withdrawal. Presently, the pent-up demand for opioid treatment overwhelms the supply of providers
100 and programs available. With 24-hour ED availability, acute withdrawal is a common primary or secondary
101 complaint in the ED. However, treatment of acute opioid withdrawal is rarely a primary focus of emergency
102 physician training. Although individual institutions may have developed internal treatment plans, there is no
103 nationwide standard protocol for treating opioid withdrawal in the ED.

104 Comprehensive opioid prescribing guidelines supported by systematic reviews of the literature are rarely
105 specifically targeted toward emergency physicians, with a much greater emphasis on long-term opioid use for
106 chronic pain and quantification of opioid use in daily morphine milligram equivalents. This metric may be
107 clinically useful in chronic prescribing but does not translate well to concrete recommendations for ED

108 prescribing for acute complaints, thus outside societal recommendations have rarely been applicable to the ED
109 setting. In the past decade, various cities and states implemented policies designed to impact ED opioid
110 prescribing. Portions of these policies relevant to the ED setting consistently focused on limiting the duration of
111 therapy for acute complaints. Examples include Washington State (less than 14 days), New York City (3 days or
112 less), and Ohio (3 days or less).^{15,16} Vermont and Massachusetts each subsequently produced regulations limiting
113 opioid prescription duration to 7 days or less for acute complaints.^{18,19} One review found 17 states with
114 regulations concerning opioid prescribing in any setting.²⁰ In 2016, the CDC released national guidelines that
115 included the following recommendation for duration of treatment of acute pain: “Three days or less will often be
116 sufficient; more than 7 days will rarely be needed.”²¹ Given the national reach of the CDC guidelines, the
117 relevance to the clinical setting, and the use of 7-day limits on duration of opioid prescribing in multiple state
118 regulations, 7 days or less was used as a consistent definition of “short course” of prescribing within this policy.

119 There are no easy solutions to the opioid problem. Balancing patient comfort and preferences with the
120 personal and societal costs associated with opioid use is a complex issue. The lack of firm regulation means that
121 the individual provider is tasked with considering individual risks and benefits of opioid prescribing. The 2012
122 clinical policy attempts to meet the needs of both patients and emergency physicians in answering pressing
123 questions related to opioids prescribed from the ED. For this policy, the focus is on appropriate treatment
124 regimens for acute opioid withdrawal, benefits and harms of short courses of short-acting opioids prescribed from
125 the ED for acute and chronic pain, and co-prescribing of opioids along with other sedating medications.

126 This policy is an update of the 2012 ACEP clinical policy on opioid prescribing. Three of the previous
127 critical questions from the 2012 policy were not updated in this version due to shifting focus of the guideline.
128 These previous questions were related to utility of state prescription drug monitoring programs, opioid prescribing
129 related to acute low back pain, and short-acting schedule II versus schedule III opioids. Of note, opioid use for
130 specific conditions is addressed within the ACEP complaint specific policies, the most recent example being the
131 discussion of opioid use for acute headache discussed in the 2019 ACEP Clinical Policy on Headaches.²²

132
133 **METHODOLOGY**
134

135 This clinical policy is based on a systematic review with critical analysis of the medical literature meeting
136 the inclusion criteria. Searches of MEDLINE, MEDLINE InProcess, SCOPUS, EMBASE, Web of Science, and
137 the Cochrane Database of Systematic Reviews, were performed. All searches were limited to studies of adult
138 humans and were published in English. Specific key words/phrases, years used in the searches, dates of searches,
139 and study selection are identified under each critical question. In addition, relevant articles from the
140 bibliographies of included studies and more recent articles identified by committee members and reviewers were
141 included.

142 This policy is a product of the ACEP clinical policy development process, including internal and external
143 review, and is based on the existing literature; when literature was not available, consensus of Clinical Policies
144 Committee members was used and noted as such in the recommendation (ie, Consensus recommendation).
145 Clinical policies are scheduled for review every 3 years; however, interim reviews are conducted when
146 technology, methodology, or the practice environment changes significantly. ACEP was the funding source for
147 this clinical policy.

148
149 Assessment of Classes of Evidence
150

151 Two methodologists independently graded and assigned a preliminary Class of Evidence for all articles
152 used in the formulation of this clinical policy. Class of Evidence is delineated whereby an article with design 1
153 represents the strongest study design and subsequent design classes (ie, design 2 and design 3) represent
154 respectively weaker study designs for therapeutic, diagnostic, or prognostic studies, or meta-analyses (Appendix
155 A). Articles are then graded on dimensions related to the study's methodological features, such as randomization
156 processes, blinding, allocation concealment, methods of data collection, outcome measures and their assessment,
157 selection and misclassification biases, sample size, generalizability, data management, analyses, congruence of
158 results and conclusions, and conflicts of interest. Using a predetermined process combining the study's design,
159 methodological quality, and applicability to the critical question, articles received a Class of Evidence grade. An
160 adjudication process involving discussion with the original methodologist graders and at least one additional
161 methodologist was then used to address any discordance in original grading, resulting in a final Class of Evidence
162 assignment (ie, Class I, Class II, Class III, or Class X) (Appendix B). Articles identified with fatal flaws or

163 ultimately determined to not be applicable to the critical question received a Class of Evidence grade “X” and
164 were not used in formulating recommendations for this policy. However, content in these articles may have been
165 used to formulate the background and to inform expert consensus in the absence of robust evidence. Grading was
166 done with respect to the specific critical questions; thus, the Class of Evidence for any one study may vary
167 according to the question for which it is being considered. As such, it was possible for a single article to receive a
168 different Class of Evidence rating when addressing a different critical question. Question-specific Classes of
169 Evidence grading may be found in the Evidentiary Table included at the end of this policy.

170
171 Translation of Classes of Evidence to Recommendation Levels
172

173 Based on the strength of evidence grading for each critical question (ie, Evidentiary Table), the
174 subcommittee drafted the recommendations and the supporting text synthesizing the evidence using the following
175 guidelines:

176 ***Level A recommendations.*** Generally accepted principles for patient care that reflect a high degree of
177 clinical certainty (eg, based on evidence from 1 or more Class of Evidence I or multiple Class of Evidence II
178 studies).

179 ***Level B recommendations.*** Recommendations for patient care that may identify a particular strategy or
180 range of strategies that reflect moderate clinical certainty (eg, based on evidence from 1 or more Class of
181 Evidence II studies or strong consensus of Class of Evidence III studies).

182 ***Level C recommendations.*** Recommendations for patient care that are based on evidence from Class of
183 Evidence III studies or, in the absence of any adequate published literature, based on expert consensus. In
184 instances where consensus recommendations are made, “consensus” is placed in parentheses at the end of the
185 recommendation.

186 The recommendations and evidence synthesis were then reviewed and revised by the Clinical Policies
187 Committee, which was informed by additional evidence or context gained from reviewers.

188 There are certain circumstances in which the recommendations stemming from a body of evidence should
189 not be rated as highly as the individual studies on which they are based. Factors such as consistency of results,

190 uncertainty about effect magnitude, and publication bias, among others, might lead to a downgrading of
191 recommendations.

192 When possible, clinically oriented statistics (eg, likelihood ratios [LRs], number needed to treat) are
193 presented to help the reader better understand how the results may be applied to the individual patient. This can
194 assist the clinician in applying the recommendations to most patients but allows adjustment when applying to
195 patients at the extremes of risk. (Appendix C)

196 This policy is not intended to be a complete manual on opioid management in the adult emergency
197 department patient but rather a focused examination of critical issues that have particular relevance to the current
198 practice of emergency medicine. Potential benefits and harms of implementing recommendations are briefly
199 summarized within each critical question.

200 It is the goal of the Clinical Policies Committee to provide an evidence-based recommendation when the
201 medical literature provides enough quality information to answer a critical question. When the medical literature
202 does not contain adequate empirical data to answer a critical question, the members of the Clinical Policies
203 Committee believe that it is equally important to alert emergency physicians to this fact.

204 This clinical policy is not intended to represent a legal standard of care for emergency physicians.
205 Recommendations offered in this policy are not intended to represent the only diagnostic or management options
206 available to the emergency physician. ACEP recognizes the importance of the individual physician's judgment
207 and patient preferences. This guideline provides clinical strategies for which medical literature exists to answer
208 the critical questions addressed in this policy.

209

210 ***Scope of Application.*** This guideline is intended for physicians working in emergency departments
211 (EDs).

212 ***Inclusion Criteria.*** This guideline is intended for adult patients presenting in unscheduled acute care
213 settings.

214 ***Exclusion Criteria.*** This guideline is not intended for pediatric patients presenting in unscheduled acute
215 care settings.

216 **CRITICAL QUESTIONS**

217 **1. In adult patients experiencing opioid withdrawal, is ED-administered buprenorphine as effective for the**
218 **management of opioid withdrawal compared with alternative management strategies?**

219
220 **Patient Management Recommendations**

221 ***Level A recommendations.*** None specified.

222 ***Level B recommendations.*** When possible, treat opioid withdrawal in the ED with opioid based therapy
223 (buprenorphine or methadone) as a more effective option compared to non-opioid based management strategies
224 such as the combination of alpha 2 adrenergic agonists and antiemetics.

225 ***Level C recommendations.*** Preferentially treat opioid withdrawal in the ED with buprenorphine rather than
226 methadone.

227 **Potential Benefits of Implementing the Recommendations:**

228 • Adequate treatment of significant opioid withdrawal with potential bridging to Medical-Assisted
229 Treatment (MAT) for opioid use disorder.

230
231 **Potential Harms of Implementing the Recommendations:**

232 • Precipitation of significant opioid withdrawal after receiving buprenorphine in the patient who is
233 opioid dependent but not yet showing signs/symptoms of opioid withdrawal.
234 • Potential side effects of buprenorphine including respiratory depression, especially if the patient is on
235 concomitant sedatives/hypnotics such as benzodiazepines.

236
237 **Key words/phrases for literature searches:** benzodiazepine, buprenorphine, buprenorphine naloxone, clonidine,
238 heroin, heroin dependence, heroin dependency, heroin withdrawal, lofexidine, methadone, methadone naloxone,
239 methadone treatment, morphine dependence, morphine dependency, morphine withdrawal, opiate addiction,
240 opioid analgesics, opioid related disorder, opioid withdrawal, tapentadol, tramadol, analgesics, antiemetics, fluid
241 therapy, oral rehydration, rehydration solutions, rehydration therapy, substance withdrawal, substance withdrawal
242 syndrome, withdrawal syndrome, ambulatory care, outpatient care, outpatient clinic, outpatient treatment,
243 emergency department, emergency health service, emergency room, emergency services, emergency ward,
244 outpatient care, outpatient clinic, outpatient department, outpatient treatment, and variations and combinations of
245 the key words/phrases. Searches included January 1, 2007, to the search dates of March 9, 2017 and August 8,
246 2018.

247
248 **Study Selection:** Three hundred and seventy-one articles were identified in the searches. Seven articles were
249 selected from the search results for further review, with zero Class I studies, zero Class II studies, and 3 Class III
250 studies included for this critical question.

251
252
253 **Opioid withdrawal**

254
255 The common symptoms of opioid withdrawal include abdominal cramping, nausea, vomiting, diarrhea,
256 agitation, anxiety, feelings of hopelessness, dysphoria, piloerection and myalgias. Onset of these symptoms from
257 the last exposure to an opioid can vary based upon the half-life of the opioid and the amount consumed, nominally
258

259 12 hours for heroin and up to 30 hours for methadone. Opioid withdrawal may be very uncomfortable but is rarely
260 life threatening as a sole condition.

261 Treatment of opioid withdrawal often involves the use of alpha-2 adrenergic agonists such as clonidine or
262 lofexidine as well as antiemetics and other drugs targeting the withdrawal symptoms. Judicious use of methadone
263 or buprenorphine may alleviate withdrawal symptoms as well. These 2 drugs are often given in decreasing doses
264 for gradual detoxification or may be given at an ongoing fixed dose to treat acute withdrawal as well as to initiate
265 Medication Assisted Treatment (MAT) for opioid use disorder.

266

267 Buprenorphine

268 Buprenorphine is a semisynthetic derivative of the opioid alkaloid thebaine that is a more potent (25 to 40
269 times) and longer lasting analgesic than morphine with a half-life of 24 hours or more. It appears to act as a partial
270 agonist at mu and kappa opioid receptors and as an antagonist at delta receptors, thus being in the group of
271 agonist/antagonist opioids. Buprenorphine was discovered in 1966 and was approved by the Food and Drug
272 Administration for opioid addiction treatment in 2002. It is currently a Schedule III drug in the US.

273 Initially, severe restrictions were placed on the administering and prescribing of buprenorphine. The Drug
274 Addiction Treatment Act of 2000 allowed the Secretary of Health and Human Services (HHS) to provide a waiver
275 (the so-called X-Waiver) to physicians to administer and prescribe buprenorphine for the treatment of opioid
276 addiction and withdrawal if they have completed a special 8-hour training course. Physicians who have not
277 achieved the waiver may still use buprenorphine in the ED to treat patients in opioid withdrawal with the
278 following restrictions:

279 “[They may] administer (but not prescribe) narcotic drugs to patients for the purpose of relieving acute
280 withdrawal symptoms while arranging for the patient’s referral for treatment, under the following
281 conditions:

282

- 283 • Not more than one day’s medication may be administered or given to a patient at one time
- 284 • Treatment may not be carried out for more than 72 hours
- The 72-hour period cannot be renewed or extended.”²³

285 (Note: “arranging for patient’s referral for treatment” is not further described or clarified; this is
286 frequently interpreted as a minimum obligation to provide the patient with treatment referral information
287 in written form.)

288

289 Non-opioid treatment for opioid withdrawal

290 Non-opioid treatment for opioid withdrawal may include the administration of alpha-2 adrenergic
291 agonists, antiemetics, benzodiazepines, and antidiarrheals. Common alpha-2 agonists for symptomatic non-
292 hypotensive opioid withdrawal patients include clonidine and lofexidine. Nausea and/or vomiting may be treated
293 with promethazine or other antiemetics. Benzodiazepines may help reduce catecholamine release during
294 withdrawal and help alleviate muscle cramps as well as anxiety. Diarrhea can be treated with loperamide or
295 octreotide. Of note, individual and combinations of non-opioid treatments appear inferior when compared to
296 buprenorphine.

297

298 Effectiveness of buprenorphine in the treatment opioid withdrawal

299 Gowing et al,²⁴ in an updated Cochrane Review (Class III), assessed 27 studies that satisfied their criteria
300 for inclusion. The vast majority of these studies were on inpatient populations. They concluded, based upon
301 quality of evidence ranging from very low to moderate that patients receiving buprenorphine for
302 withdrawal/detoxification compared to clonidine or lofexidine (alpha-2 adrenergic agonist approved in the US in
303 2018) had less severe signs and symptoms of withdrawal, had fewer side effects, and were more likely to stay in
304 treatment longer. They also concluded that buprenorphine is probably similar in effectiveness to tapered doses of
305 methadone in the treatment of opioid withdrawal.

306 Meader²⁵ in a 2010 meta-analysis of 20 randomized controlled trials (Class III) concluded that
307 buprenorphine and methadone were the most effective methods of opioid detoxification with the former
308 potentially being most effective. This was followed by lofexidine and clonidine, respectively. The duration of
309 treatment in these studies ranged from 3 to 30 days, which make application to the ED somewhat problematic.

310 Amato et al,²⁶ in a Class III systematic review, compared tapered dose methadone to multiple other
311 treatment modalities, one of which was buprenorphine. Their conclusion was that slow tapering of long-acting

312 opioids can reduce severity of withdrawal symptoms. Seventeen of the 23 studies included in the meta-analysis
313 were inpatient based, again with little applicability to ED care.

314

315 Medication-Assisted Treatment

316 Medication-Assisted Treatment (MAT) is the use of FDA-approved medications, in combination with
317 counseling and behavioral therapies, to provide a "whole-patient" approach to the treatment of substance use
318 disorders. For patients with opioid use disorder, this treatment may involve the administration of methadone,
319 buprenorphine, or extended-release naltrexone. This approach has demonstrated effectiveness and saves lives.²⁷
320 MAT has been initiated in many EDs, with the typical goal of continuation of the program on an outpatient
321 basis.²⁸ These programs have demonstrated improved short-term improvement in treatment and illicit opioid use
322 rates over referral only or brief intervention. However, there was no observed difference in long-term (6 and 12
323 months) outcomes in a study of MAT initiation from the ED compared to brief intervention or referral for
324 outpatient initiation of MAT.²⁹

325 Cautions in using buprenorphine to treat opioid withdrawal in the ED:

- 326 • In treating withdrawal in the ED with buprenorphine the SAMSHA guidelines mentioned above should
327 be followed. The physician should use one of the forms of buprenorphine that have been designated as
328 acceptable to the Drug Enforcement Administration (DEA) for treatment of opioid use disorder/opioid
329 withdrawal (such as Suboxone, Subutex, Zubsolv, Sublocade or generic equivalents).
- 330 • Buprenorphine should only be administered to patients in active opioid withdrawal as confirmed by
331 history and physical examination. Because of its antagonist properties, it may induce significant
332 withdrawal symptoms if the patient is currently taking opioids and not yet in withdrawal. In addition,
333 particular care is required when transitioning from methadone to buprenorphine, due to risk of severe and
334 prolonged precipitated withdrawal. Several tools (such as the Clinical Opiate Withdrawal Scale [COWS])
335 may be used to assist in the assessment of severity of withdrawal.
- 336 • Comprehensive data on buprenorphine dosing in opioid withdrawal in the ED are lacking. One algorithm
337 is provided by Herring, et al.³⁰

338

339 Summary

340 Although there is a paucity of quality studies concerning the administration of buprenorphine to treat
341 opioid withdrawal in the ED, several systematic reviews (based mainly on inpatient studies) would imply that
342 buprenorphine administration is a safe and effective treatment for opioid withdrawal and potentially superior to
343 other modalities of opioid withdrawal treatment.

344
345 Future Research
346

347 • A clinical trial to evaluate the efficacy and effectiveness of treating ED patients in opioid withdrawal with
348 buprenorphine.
349 • Further studies to better determine the best ED induction target dose of buprenorphine prior to ED
350 discharge are needed.
351 • Evaluation of injectable depot buprenorphine in the ED for subacute opioid withdrawal treatment after
352 discharge is needed.
353

354

355 **2. In adult patients experiencing an acute painful condition, do the benefits of prescribing a short course of
356 opioids on discharge from the emergency department outweigh the potential harms?**

357
358 **Patient Management Recommendations**

359 *Level A recommendations.* None specified.

360 *Level B recommendations.* None specified.

361 *Level C recommendations.* Preferentially prescribe nonopioid analgesic therapies (non-pharmacologic
362 and pharmacologic) rather than opioids as the initial treatment of acute pain in patients discharged from the ED.
363 In cases where opioid medications are deemed appropriate, prescribe the lowest indicated dose of a short
364 acting opioid for the shortest period of time (Consensus recommendation).

365

366 Potential Benefits of Implementing the Recommendations:

367 • By limiting the number of opioid prescriptions written upon discharge from the ED and limiting
368 the duration of therapy, emergency physicians may be able to reduce the incidence of patients
369 who develop opioid dependence and misuse, including death from opioid overdose, as well as
370 prevent patients from developing unnecessary adverse effects from the medications when
371 alternative medication or therapies with less severe side effects are available.

372
373

374 Potential Harms of Implementing the Recommendations:

375 • There is concern that by severely curtailing the use of opioid prescribing for ED patients there is a
376 risk of oligoanalgesia (failure to provide analgesia in patients with acute pain).

377
378

379 Key words/phrases for literature searches: opiate, opioid, opioids, analgesia, analgesic agent, analgesics, opioid
380 analgesics, narcotics, drug prescriptions, drug therapy, prescription drug, acute pain, pain, pain management, back
381 pain, bone fractures, contusion, dental pain, fractures, low back pain, neck pain, sprains, strains, toothache,
382 addiction, adverse effect, death, drug dependence, drug dependency, overdose, readmission, treatment outcome,
383 nephrolithiasis, emergencies, emergency, emergency department, emergency health services, emergency room,
384 emergency services, and variations and combinations of the key words/phrases. Searches included January 1,
385 2007, to the search dates of March 9, 2017 and August 8, 2018.

386

387 Study Selection: Four hundred thirty-one articles were identified in the searches. Eighteen articles were selected
388 from the search results for further review, with zero Class I studies, zero Class II studies, and 2 Class III studies
389 were included for this critical question.

390
391
392 The CDC has observed that there is an increased risk for opioid naïve patients to develop long-term
393 opioid use beginning with the third day of therapy, potentially leading to opioid use disorder.³¹ A survey of ED
394 patients with current opioid dependence found that over one third of these patient's self-reported they first became
395 exposed to opioids through legitimate prescriptions for acute painful conditions. In 11% of the ED population
396 with current opioid dependence, the index prescription came from an ED visit.³² The challenge for emergency
397 providers is that it is unknown as to which patients will develop opioid dependence or misuse disorder or suffer
398 adverse effects from the medication.

399 While it may be difficult to predict which patients discharged from the ED with opioid prescriptions will
400 develop opioid use disorder, there is evidence suggesting that opioid naïve ED patients are at increased risk for
401 developing opioid use disorder. Hoppe et al, in a Class III study, found that 17% of patients discharged from EDs
402 leave with a prescription for opioids.³³ Most of these prescriptions were written for patients with diagnoses of
403 back pain, abdominal pain, and extremity injuries. Nearly all of these patients received a short course (median 15
404 pills) of short-acting opioids. He found that those opioid naïve patients who fill a prescription for opioids have an
405 adjusted odds ratio of 1.8 (95% CI 1.3 to 2.3) that they will experience recurrent use of opioids within one year.³³

406 Although short course ED specific literature is limited, in a randomized controlled study (Class III),
407 Friedman et al, showed that discharged ED patients with low back pain who received oxycodone in addition to
408 naproxen did not have improved pain benefit after 7 days compared to naproxen alone. In addition, those taking
409 oxycodone were 19% more likely (95% CI 7% to 31%) to have adverse reactions such as drowsiness, dizziness,
410 and nausea/vomiting.³⁴

411

412 Summary

413 Opioid prescribing in the ED, even when done using short-acting, low-potency medications for a few
414 days of therapy is not risk free. Patients may suffer immediate adverse effects such as nausea and vomiting and
415 are at risk for developing dependency and even death from overdose. Therefore, opioid prescribing, even for a

416 short course from the ED, should be reserved for patients for whom there is a need for pain relief and alternative
417 medications, or nonpharmacologic therapies have been ineffective or are expected to be ineffective, or are
418 contraindicated. In those cases, risks and benefits and alternatives should be discussed with the patient and low-
419 dose, short-acting opioids and short duration of therapy should be prescribed.

420
421 Future Research
422

423 Future areas of research should include:

424 • Clinical trials to evaluate interventions in the ED to increase patient understanding of the side
425 effects of opioids and risks of dependence and opioid misuse.
426 • Clinical trials comparing opioid versus nonopioid analgesics and other pain treatment modalities
427 in discharged ED patients are needed.

428
429 **3. In adult patients with an acute exacerbation of noncancer chronic pain, do the benefits of prescribing a**
430 **short course of opioids on discharge from the emergency department outweigh the potential harms?**
431

432 **Patient Management Recommendations**

433 ***Level A recommendations.*** None specified.

434 ***Level B recommendations.*** None specified.

435 ***Level C recommendations.*** Do not routinely prescribe opioids to treat an acute exacerbation of noncancer
436 chronic pain for patients discharged from the ED. Nonopioid analgesic therapies (non-pharmacologic and
437 pharmacologic) should be used preferentially.

438 In cases where opioid medications are deemed appropriate, prescribe the lowest indicated dose of a short
439 acting opioid for the shortest period of time that is feasible (Consensus recommendation).

440

441 **Potential Benefits of Implementing the Recommendations:**

442 • Avoid exposing patients to an increased risk of developing opioid use disorder.
443 • Avoid potential immediate adverse effects associated with opioid use, specifically vomiting, but
444 also including nausea, constipation, dizziness, drowsiness, headache, pruritus, and dry mouth.

445
446
447 **Potential Harms of Implementing the Recommendations:**

448 • Withholding a treatment associated with a statistically significant, but small, improvements in
449 pain control compared with placebo (but not to nonopioid alternatives).

451
452 Key words/phrases for literature searches: opiate, opioid, opioids, opioid analgesic, acute pain, chronic pain,
453 musculoskeletal pain, cancer, musculoskeletal diseases, neoplasms, drug prescriptions, prescription drugs, drug
454 administration schedule, medication adherence, opioid abuse, opioid overdose, opioid related disorders, drug
455 overdose, risk assessment, patient discharge, hospitalization, patient readmission, emergency room, emergency
456 services, and variations and combinations of the key words/phrases. Searches included January 1, 2012, to the
457 search dates of March 9, 2017, April 12, 2017, and August 8, 2018.
458

459 Study Selection: One thousand one hundred ten articles were identified in the searches. Thirty-nine were selected
460 from the search results for further review, with zero Class I studies, zero Class II studies, and 3 Class III studies
461 were included for this critical question.
462
463
464

465 Patients with chronic noncancer pain frequently present to the ED for treatment of acute exacerbations of
466 their chronic pain. Unfortunately, there have been no studies that evaluate the efficacy or potential harms of
467 prescribing a short course of opioids upon discharge from the ED among this specific patient population. While
468 the paucity of directly applicable studies precludes giving a more definitive answer to this question, there is
469 existing literature that allows for reasonable inferences to be made about the potential risks and benefits of
470 prescribing a short course of opioids to patients with an acute exacerbation of their chronic noncancer pain. Of
471 note, this policy specifically excludes pain management for sickle cell disease. The recommendations contained
472 within do not apply to the sickle cell population.

473 A Class III systematic review by Busse et al³⁵ of randomized clinical trials examined the harms
474 and benefits of opioids for patients with chronic noncancer pain. The review examined 96 trials
475 including 26,169 participants treated with opioids for control of their chronic noncancer pain, and the
476 efficacy of opioids for pain control and physical functioning compared with placebo, as well as to other
477 nonopioid analgesic options (including nonsteroidal anti-inflammatory drugs, tricyclic antidepressants,
478 anticonvulsants and synthetic cannabinoids). This review also examined the adverse effects (vomiting,
479 nausea, constipation, dizziness, drowsiness, headache, pruritis, and dry mouth) of opioids compared with
480 placebo. Overall, the authors found that opioids did not provide a level of analgesic benefit that reached
481 the predetermined threshold for a minimally important reduction in pain (1 cm on a 10-cm visual analog
482 scale) compared with placebo (weighted mean difference, -0.79 cm [95% CI -0.90 to -0.68 cm] on a
483 10-cm visual analog scale for pain). Similarly, opioids did not result in meaningful improvement in

484 physical functioning (5 points on a 100-point Short Form-36 physical component score) with a weighted
485 mean difference, 2.04 points (95% CI 1.41 to 2.68 points). These findings are supported by high-quality
486 evidence from 42 and 51 randomized controlled trials, respectively. In terms of adverse effects, opioids
487 were found to result in significant increases in all measured side effects, with vomiting having the most
488 pronounced difference, 5.9% with opioids versus 2.3% with placebo for trials that excluded patients
489 with adverse events during a run-in period (relative risk 2.50 [95% CI 1.89 to 3.30], $P<.001$; risk
490 difference 3.6% [95% CI 2.1% to 5.4%]). In contrast to the evidence comparing opioids to placebo, the evidence
491 comparing opioids to nonopioid medications for analgesia was of overall low-to-moderate quality; however,
492 opioids were not found to be superior to any of the comparator groups. More specifically, moderate quality
493 evidence found no difference between opioids and NSAIDS for either pain relief (weighted mean difference
494 -0.60 cm [95% CI -1.54 to 0.34 cm] on the 10-cm visual analog scale for pain, $P=.21$) or physical functioning
495 (weighted mean difference -0.90 points [95% CI -2.69 to 0.89 points] on the 100-point Short Form-36 physical
496 component score, $P=.33$), but did find that opioids were associated with an increase in vomiting compared with
497 NSAIDS (relative risk 4.71 [95% CI 2.92 to 7.60], $P<.001$; risk difference 6.3% [95% CI 3.2% to 11.1%]).

498 Beyond the immediate potential adverse effects of opioid use, there exists the significant concern that
499 patients with chronic noncancer pain who are prescribed opioids may be at risk of developing opioid dependence
500 or opioid use disorder. There are 2 large non ED-based retrospective studies that provide an estimation of the
501 strength of association of opioid prescription with adverse outcomes. A 2014 Class III study by Edlund et al³⁶
502 examined claims data for 568,640 individuals with a new episode of chronic noncancer pain, not receiving
503 opioids in the previous 6 months and with no previous diagnosis of an opioid use disorder. They found that those
504 prescribed opioids had significantly higher risk of developing opioid use disorders compared with those not
505 prescribed opioids, even among those who received what they termed low dose (0 to 36 mg morphine/day), acute
506 (1 to 90 days) prescriptions, (odds ratio 3.03; 95% CI 2.32, 3.95). The risk was markedly increased for those
507 patients who took opioids for >90 days and the magnitude of the risk increased markedly in this long-term opioid
508 use group depending on dose (odds ratio 14.92, 28.69 and 122.45 for the low, medium, and high groups,
509 respectively). Individuals diagnosed with mental health disorders, alcohol use disorder, and nonopioid drug use

510 disorders were also found to be at increased risk of developing opioid use disorder after being prescribed opioids
511 for their chronic noncancer pain.

512 In a 2017 Class III study by the CDC,³¹ examined the association between first opioid use among opioid
513 naïve patients without cancer and the likelihood that the patient would continue to use opioids at 1 year and 3
514 years, stratified by treatment duration, dosage, and number of prescriptions. The 1,294,247 patients who received
515 their first opioid prescription between 2006 and 2015 were identified in a database as meeting the inclusion
516 criteria, of which 33,548 (2.6%) continued to use opioids for at least 1 year. Significantly, the authors found that
517 the probability of long-term opioid use increased most sharply in the initial days after initiating opioid use,
518 increasing markedly after only 5 days of prescription duration (and again at 1 month). As important context, this
519 study found that ~70% of patients received an initial prescription of less than or equal to 7 days.

520

521 Summary

522 Although there are no studies directly examining the impact of a short prescription of opioids for ED
523 patients presenting with an acute exacerbation of chronic noncancer pain, a high quality systematic review of
524 randomized control trials (based mainly on outpatient studies) found that opioids offered no clinically significant
525 reduction in pain or improvement in function compared with placebo or nonopioid treatment options, but did
526 increase adverse events (most notably vomiting).³⁵ Two large retrospective studies found clear associations
527 between opioid prescriptions and the development of subsequent long-term use and opioid use disorder, even with
528 low-dose prescriptions of short duration (with clear effects evident in prescriptions of as little as ≥ 5 days
529 duration).^{31,36} These data would all suggest that the risks of prescribing even a short course of opioids for ED
530 patients with acute exacerbations of chronic noncancer pain outweigh the negligible to potentially nonexistent
531 benefits.

532

533 Future Research

534 Prospective trials evaluating both the efficacy and potential harms of prescribing a short course of opioid
535 medication for the treatment of acute exacerbations of a chronic noncancer pain are needed. Studies should focus
536 both on analgesic benefits using commonly accepted pain scale ratings and should compare frequently prescribed

537 opioid formulations and dosages to nonopioid alternatives, particularly NSAIDs. Studies that examine the risk of
538 this patient population developing either long-term opioid use or opioid use disorder after being prescribed a short
539 course of opioids after ED discharge are also essential. Ideally these studies would be able to determine the
540 associated risk of opioid overdose among these patients as well.

541

542 **4. In adult patients with an acute episode of pain being discharged from the emergency department, do the**
543 **harms of a short concomitant course of opioids and muscle relaxants/sedative-hypnotics outweigh the**
544 **benefits?**

545

546 **Patient Management Recommendations**

547 ***Level A recommendations.*** None specified.

548 ***Level B recommendations.*** None specified.

549 ***Level C recommendations.*** Do not routinely prescribe, or knowingly cause to be co-prescribed, a
550 simultaneous course of opioids and benzodiazepines (as well as other muscle relaxants/sedative-hypnotics) for
551 treatment of an acute episode of pain in patients discharged from the ED (Consensus recommendation).

552

553 **Potential Benefits of Implementing the Recommendations:**

554 • Reduce potential overdose risk and other potential harms due to over-sedation.

555

556 **Potential Harms of Implementing the Recommendations:**

557 • Insufficient reduction in pain and muscle spasms.

558

559 **Key words/phrases for literature searches:** opiate, opioid, opioids, analgesics, sedatives, anti-anxiety agents,
560 hypnotics, muscle relaxants, baclofen, benzodiazepine, carisoprodol, cyclobenzaprine, eszopiclone, metaxalone,
561 methocarbamol, tapentadol, tramadol, zaleplon, zolpidem, acute pain, pain, pain management, substance-related
562 disorders, drug overdose, mortality, death, emergency, emergency department, emergency health services,
563 emergency room, outpatient care, ambulatory care, patient discharge, patient readmission, treatment outcome,
564 and variations and combinations of the key words/phrases. Searches included January 1, 2007, to the search dates
565 of March 9, 2017, and August 8, 2018.

567

568 **Study Selection:** Five hundred thirty-four articles were identified in the searches. Twenty-five articles were
569 selected from the search results for further review. None of the 25 articles were classified as Class I, II, or III;
570 therefore, zero studies were included for this critical question.

571

572

573 Benzodiazepines are relatively safe when prescribed alone. However, similar to the trend of increased
574 overdose mortality associated with the increased prescribing of opioids over the last 2 decades, a trend of
575 increased mortality associated with the increased prescribing of benzodiazepines has been identified.³⁷ This

576 increased burden is thought to be due to the dramatic potentiation of opioid related respiratory depression when
577 taken in combination.³⁸ These effects are evident in increasing rates of ED treatment of overdoses and drug
578 related deaths related to the combination of opioids and benzodiazepines.³⁹ Population based studies examining
579 patterns of opioids and sedative-hypnotics/muscle relaxers prescribing, most prominently benzodiazepines, have
580 identified a substantial increased risk of death when these agents are co-prescribed. In particular, these studies
581 have identified an outsized risk related to co-prescribing with a 3 to 10 fold increase in death in patients co-
582 prescribed opioids and benzodiazepines compared to opioids alone.^{40,41} The literature search and evaluation
583 process outlined in the Methodology section of this clinical policy yielded no directly applicable primary research
584 study of at least a Class III level of evidence assignment. However, the indirect evidence from our understanding
585 of the pharmacologic mechanism of these agents, examination of prescribing patterns, and overdose epidemiology
586 as described above suggest that co-prescribing is a significant danger to the ED population.

587 Unfortunately, there is a dearth of evidence evaluating analgesic efficacy or patient functional
588 improvement when combining prescriptions for muscle relaxants (including benzodiazepines) with prescriptions
589 for opioids for acute pain when being discharged from an ED. However, there is a demonstrated lack of benefit
590 for prescribing either opioids or sedative-hypnotic/muscle relaxers for many common painful conditions. For
591 example, recent meta-analyses suggest that for the treatment of acute LBP, combination pharmacotherapy (eg,
592 opioid with NSAID, or muscle relaxant with NSAID) does not outperform monotherapy with NSAID, and that
593 muscle relaxant drugs do not provide clinically significant additional pain relief. Furthermore, these meta-
594 analyses suggest that co-prescribing muscle-relaxants may increase risk of patient harm.^{42,43} Although there is a
595 lack of direct evidence related to ED prescribing patterns, given the increased risks of co-prescribing and lack of
596 demonstrated benefit, the committee was able to reach consensus to develop the recommendation.

597 During the same period that the dangers of coprescribing were recognized, institutions focused on quality
598 and safety have produced guidelines, such as a recent quality measure by the National Quality Forum (NQF),
599 titled “Safe Use of Opioids – Concurrent Prescribing” #3316e (2018), or the VA/DoD Clinical Practice Guideline
600 for Diagnosis and Treatment of Low Back Pain (2017), that make specific recommendations against co-
601 prescribing muscle relaxants/sedative-hypnotics (and specifically benzodiazepines) along with opioids.^{44,45}
602 Moreover, the FDA added a “black box” warning in 2016 to both opioids and benzodiazepines recommending

603 against co-prescribing these agents.⁴⁶ Unfortunately, none of these guidelines draw upon studies that met
604 inclusion criteria for this guideline. However, given the widespread potential impact on health care system
605 policies and reimbursement, providers should become familiar with the NQF measure:

606 “NQF # 3316e” specifically evaluates “Patients age 18 years and older prescribed two or more opioids or
607 an opioid and benzodiazepine concurrently at discharge from a hospital-based encounter (inpatient or emergency
608 department [ED], including observation stays).”

609

- S.4. Numerator Statement: Patients prescribed two or more opioids, or an opioid and benzodiazepine
610 at discharge.
- S.6. Denominator Statement: Patients age 18 years and older prescribed an opioid or a
611 benzodiazepine at discharge from a hospital-based encounter (inpatient stay less than or equal to 120
612 days or emergency department encounters, including observation stays) during the measurement
613 period.
- S.8. Denominator Exclusions: The following encounters are excluded from the denominator:
 - Encounters for patients with an active diagnosis of cancer during the encounter
 - Encounters for patients who are ordered for palliative care during the encounter
 - Inpatient encounters with length of stay greater than 120 days

615 Denominator exceptions: None

616

617 Summary

618 Although there is a paucity of quality studies concerning the co-prescribing of a short concomitant course
619 of opioids and muscle relaxants/sedative-hypnotics for acute pain in ED patients, the evolving epidemiologic data,
620 and non-ED studies suggest that in the ED, co-prescribing of these 2 classes of medications should be done with
621 caution, and when possible, avoided.

622

623 Future Research

- Prospective trials evaluating optimal treatment regimens for patients with specific acute pain indications (eg, acute low back pain) being discharged from an ED.
- Prospective trials studying the impact of the use of state pharmacy boards’ prescription drug monitoring programs or ED information exchanges to improve patient selection, and reduce risk, with respect to opioid prescriptions in patients being discharged from an ED.

633
634 **Relevant industry relationships:** Dr. Ketcham has worked on a joint ACEP/American Society of Addiction
635 Medicine project related to ED initiation of medication-assisted treatment that was grant funded by Indivior, the
636 manufacturer of Suboxone. Mitigation of this potential conflict was achieved by allowing Dr. Ketcham to
637 participate in and contribute his experience to the content development of the critical questions; however, he was
638 not allowed to vote when establishing the final recommendations for question 1. He was assigned to work on
639 question 4.

640
641 **Relevant industry relationships are those relationships with companies associated with products or services**
642 **that significantly impact the specific aspect of disease addressed in the critical question.**

643

DRAFT

644 REFERENCES

645

646 1. Rudd RA, Aleshire N, Zibbell JE, et al. Increases in drug and opioid overdose deaths – United States, 647 2000-2014. *MMWR Morb Mortal Wkly Rep.* 2016;64:1378-1382

648

649 2. Gomes T, Tadrous M, Mamdani MM, et al. The burden of opioid-related mortality in the United States. 650 *JAMA Network Open.* 2018;1:e180217.

651

652 3. Xu JQ, Murphy SL, Kochanek KD, Bastian B, Arias E. Deaths: Final data for 2016. National Vital 653 Statistics Reports; vol 67 no 5. Hyattsville, MD: National Center for Health Statistics. 2018.

654

655 4. Dart RC, Surratt HL, Cicero TJ, et al. Trends in opioid analgesic abuse and mortality in the United States. 656 *N Engl J Med.* 2015;372:241-248.

657

658 5. Compton WM, Jones CM Baldwin GT. Relationship between nonmedical prescription-opioid use and 659 heroin use. *N Engl J Med.* 2016;374:154-163.

660

661 6. Jones CM. Heroin use and heroin use risk behaviors among nonmedical users of prescription opioid pain 662 relievers – United States, 2002-2004 and 2008-2010. *Drug Alcohol Depend.* 2013;132:95-100.

663

664 7. Rudd RA, Seth P, David F, et al. Increases in drug and opioid-involved overdose deaths – United States, 665 2010-2015. *MMWR Morb Mortal Wkly Rep.* 2016;65:1445-1452.

666

667 8. Mazer-Amirshahi M, Mullins PM, Rasooly I, et al. Rising opioid prescribing in adult U.S. emergency 668 department visits: 2001-2010. *Acad Emerg Med.* 2014;21:236-243.

669

670 9. Kea B, Fu R, Lowe RA, et al. Interpreting the National Hospital Ambulatory Medical Care Survey: 671 United States Emergency Department Opioid Prescribing, 2006-2010. *Acad Emerg Med.* 2016;23:159- 672 165.

673

674 10. Hoppe JA, Nelson LS, Perrone J, et al for the Prescribing Opioids Safely in the Emergency Department 675 (POSED) Study Investigators. Opioid prescribing in a cross section of US emergency departments. *Ann 676 Emerg Med.* 2015;66:253-259.e1.

677

678 11. Axeen S, Seabury SA, Menchine M. Emergency department contribution to the prescription opioid 679 epidemic. *Ann Emerg Med.* 2018;71:659-667.

680

681 12. Axeen S, Seabury SA, Menchine M. Emergency department contribution to the prescription opioid 682 epidemic. *Ann Emerg Med.* 2018;71:659-667.

683

684 13. Lyapustina T, Castillo R, Omaki E, et al. The contribution of the emergency department to opioid pain 685 reliever misuse and diversion: a critical review. *Pain Pract.* 2017;17:1097-1104.

686

687 14. Weiss AJ, Barrett ML, Heslin KC et al. Trends in emergency department visits involving mental and 688 substance use disorders, 2006-2013: statistical brief #216. Healthcare Cost and Utilization Project 689 (HCUP) Statistical Briefs [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 690 2006-2016 Dec.

691

692 15. Washington State Agency Medical Directors' Group in collaboration with an Expert Advisory Panel, 693 Actively Practicing Providers Public Stakeholders, and Senior State Officials. Interagency guideline on 694 prescribing opioids for pain. 3rd edition, June 2015. Available at: 695 <http://www.agencymeddirectors.wa.gov/Files/2015AMDGOpioidGuideline.pdf>. Accessed May 9, 2019.

696

697 16. New York City Emergency Department Discharge Opioid Prescribing Guidelines Clinical Advisory
698 Group. New York City Emergency Department Discharge Opioid Prescribing Guidelines. Available at:
699 <https://www1.nyc.gov/assets/doh/downloads/pdf/basas/opioid-prescribing-guidelines.pdf>. Accessed May
700 9, 2019.

701 17. Ohio Mental Health & Addiction Services. Opioid prescribing guidelines. Available at:
702 <https://mha.ohio.gov/News/-GCOAT-Opiate-Action-Team/Opioid-Prescribing-Guideline>. Accessed May
703 9, 2019.

704 18. Vermont Department of Health. Rules governing the prescribing of opioids for pain. Final adopted rule.
705 March 1, 2019. Available at: <http://www.healthvermont.gov/file/regopioids-prescribing-painpdf>.
706 Accessed May 9, 2019.

707 19. The 191st General Court of the Commonwealth of Massachusetts. An act relative to substance use,
708 treatment, education and prevention. Bill H.4056, 2016. Available at:
709 <https://malegislature.gov/Bills/189/House/H4056>. Accessed May 9, 2019.

710 20. Broida RI, Gronowski T, Kalnow AF, et al. State emergency department opioid guidelines: current status.
711 *West J Emerg Med.* 2017;18:340-344.

712 21. Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain – United
713 States, 2016. *JAMA.* 2016;315:1624-1645.

714 22. Godwin SA, Cherkas DS, Panagos PD, et al. Clinical policy: critical issues in the evaluation and
715 management of adult patients presenting to the emergency department with acute headache. *Ann Emerg
716 Med.* 2019;74:e41-e74.

717 23. Substance Abuse and Mental Health Services Administration (SAMHSA). Special circumstances for
718 providing buprenorphine. 2019. Available at: [https://www.samhsa.gov/medication-assisted-
720 treatment/legislation-regulations-guidelines/special](https://www.samhsa.gov/medication-assisted-
719 treatment/legislation-regulations-guidelines/special). Accessed May 10, 2019.

721 24. Gowing L, Ali R, White JM, et al. Buprenorphine for managing opioid withdrawal (review). *Cochrane
722 Database of Syst Rev.* 2017;(2):CD002025.

723 25. Meader N. A comparison of methadone buprenorphine and alpha2 adrenergic agonists for opioid
724 detoxification: a mixed treatment comparison meta-analysis. *Drug Alcohol Depend.* 2010;108:110-114.

725 26. Amato L, Davoli M, Minozzi S, et al. Methadone at tapered doses for the management of opioid
726 withdrawal (review). *Cochrane Database of Syst Rev.* 2013;(2):CD003409.

727 27. National Academies of Science, Engineering, and Medicine. *Medications for Opioid Use Disorder Save
728 Lives.* Washington, DC: The National Academies Press; 2019.

729 28. Busch SH, Fiellin DA, Chawarski MC, et al. Cost-effectiveness of emergency department-initiated
730 treatment for opioid dependence. *Addiction.* 2017;112:2002-2010.

731 29. D'Onofrio GD, Chawarski MC, O'Connor PG, et al. Emergency department-initiated buprenorphine for
732 opioid dependence with continuation in primary care: outcomes during and after intervention. *J Gen
733 Intern Med.* 2017;32:660-666.

734 30. Herring AA, Perrone J, Nelson LS. Managing opioid withdrawal in the emergency department with
735 buprenorphine. *Ann Emerg Med.* 2019;73:481-487.

750 31. Shah A, Hayes CJ, Martin BC. Characteristics of initial prescription episodes and likelihood of long-term
751 opioid use – United States, 2006-2015. *MMWR Morb Mortal Wkly Rep.* 2017;66:265-269.

752 32. Butler MM, Ancona RM, Beauchamp GA, et al. Emergency department prescription opioids as an initial
753 exposure preceding addiction. *Ann Emerg Med.* 2016;68:202-208.

754 33. Hoppe JA, Kim H, Heard K. Association of emergency department opioid initiation with recurrent opioid
755 use. *Ann Emerg Med.* 2015;65:493-499.

756 34. Friedman BW, Dym AA, Davitt M, et al. Naproxen with cyclobenzaprine, oxycodone/acetaminophen, or
757 placebo for treating acute low back pain. A randomized clinical trial. *JAMA.* 2015;314:1572-1580.

758 35. Busse JW, Wang L, Kamaleldin M, et al. Opioids for chronic noncancer pain. A systematic review and
759 meta-analysis. *JAMA.* 2018;320:2448-2460.

760 36. Edlund MJ, Martin BC, Russo JE, et al. The role of opioid prescription in incident opioid abuse and
761 dependence among individuals with chronic noncancer pain. The role of opioid prescription. *Clin J Pain.*
762 2014;30:557-564.

763 37. Bachhuber MA, Hennessy S, Cunningham CO, et al. Increasing benzodiazepine prescriptions and
764 overdose mortality in the United States, 1996-2013. *Am J Public Health.* 2016;106:686-688.

765 38. Jann M, Kennedy WK, Lopez G. Benzodiazepines: a major component in unintentional prescription drug
766 overdoses with opioid analgesics. *J Pharm Pract.* 2014;27:5-16.

767 39. Jones CM, McAninch JA. Emergency department visits and overdose deaths from combined use of
768 opioids and benzodiazepines. *Am J Prev Med.* 2015;49:493-501.

769 40. Dasgupta N, Funk MJ, Proescholdbell S, et al. Cohort study of the impact of high-dose opioid analgesics
770 on overdose mortality. *Pain Med.* 2016;17:85-98.

771 41. Park TW, Saitz R, Ganoczy D, et al. Benzodiazepine prescribing patterns and deaths from drug overdose
772 among US veterans receiving opioid analgesics: case-cohort study. *BMJ.* 2015;350:h2698.

773 42. Song L, Qiu P, Xu J, et al. The effect of combination pharmacotherapy on low back pain. A meta-
774 analysis. *Clin J Pain.* 2018;34:1039-1046.

775 43. Abdel Shaheed C, Maher CG, Williams KA, et al. Efficacy and tolerability of muscle relaxants for low
776 back pain: systematic review and meta-analysis. *Eur J Pain.* 2017;21:228-237.

777 44. National Quality Forum. Safe use of opioids – concurrent prescribing. Emeasure 3316e, 2018. Available
778 at: <http://www.qualityforum.org/QPS/MeasureDetails.aspx?standardID=3316&print=0&entityTypeID=1>.
779 Accessed May 24, 2019.

780 45. Department of Veterans Affairs, Department of Defense. *VA/DoD clinical practice guideline for*
781 *diagnosis and treatment of low back pain.* 2017;September:1-110.

782 46. United States Food and Drug Administration. FDA warns about serious risks and death when combining
783 opioid pain or cough medicines with benzodiazepines; requires its strongest warning. Available at:
784 <https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-about-serious-risks-and-death-when-combining-opioid-pain-or>. Accessed December 4, 2019.

802 **Appendix A.** Literature classification schema.*

Design/ Class	Therapy [†]	Diagnosis [‡]	Prognosis [§]
1	Randomized, controlled trial or meta-analysis of randomized trials	Prospective cohort using a criterion standard or meta-analysis of prospective studies	Population prospective cohort or meta-analysis of prospective studies
2	Nonrandomized trial	Retrospective observational	Retrospective cohort Case control
3	Case series	Case series	Case series

803 *Some designs (eg, surveys) will not fit this schema and should be assessed individually.

804 [†]Objective is to measure therapeutic efficacy comparing interventions.

805 [‡]Objective is to determine the sensitivity and specificity of diagnostic tests.

806 [§]Objective is to predict outcome, including mortality and morbidity.

807 **Appendix B.** Approach to downgrading strength of evidence.

Downgrading	Design/Class		
	1	2	3
None	I	II	III
1 level	II	III	X
2 levels	III	X	X
Fatally flawed	X	X	X

808 **Appendix C.** Likelihood ratios and number needed to treat.*

LR (+)	LR (-)	
1.0	1.0	Does not change pretest probability
1-5	0.5-1	Minimally changes pretest probability
10	0.1	May be diagnostic if the result is concordant with pretest probability
20	0.05	Usually diagnostic
100	0.01	Almost always diagnostic even in the setting of low or high pretest probability

809 LR, likelihood ratio.

810 *Number needed to treat (NNT): number of patients who need to be treated to achieve 1 additional good outcome; $NNT = 1/\text{absolute risk reduction} \times 100$, where absolute risk reduction is the risk difference between 2 event rates (ie, experimental and control groups).

Evidentiary Table.

Study & Year Published	Class of Evidence	Setting & Study Design	Methods & Outcome Measures	Results	Limitations & Comments
Gowing et al ²⁴ (2017)	III for Q1	Systematic review of RCTs of interventions of opioid withdrawal using buprenorphine; inpatient and outpatient settings; no studies in EDs	Withdrawal treatment with buprenorphine was compared with methadone, clonidine, and lofexidine; outcome measures included intensity of withdrawal, adverse effects, and rate of withdrawal treatment completion; used standard meta-analytic approaches	Included 27 studies with 3,048 participants; meta-analysis was possible for treatment duration (similar for buprenorphine and methadone) 1.3 days and treatment completion rates, risk ratio=1.04, (95% CI 0.91 to 1.2); compared to clonidine and lofexidine, buprenorphine had lower average withdrawal scores, -0.43 (95% CI -0.58 to -0.28); buprenorphine patients also stayed in treatment longer and were more likely to complete treatment, risk ratio=1.6 (95% CI 1.2 to 2.1); no significant difference in adverse events; for difference in treatment completion, number needed to treat=4 (95% CI 3 to 6); for every 4 treated with buprenorphine, 1 additional person will complete treatment compared to clonidine or lofexidine; buprenorphine is more effective than clonidine or lofexidine for managing opioid withdrawal in terms of severity of withdrawal, duration of withdrawal treatment, and the likelihood of treatment completion; buprenorphine and methadone appear to be equally effective, but data are limited	No ED studies; most study participants were male with no outcomes based on gender; 7 studies were funded or medicines provided by a pharmaceutical company; funding source unclear for 7 studies; 12 of the studies had a high risk of bias. No meta-analysis could be done for the comparison to methadone for the outcome of withdrawal or adverse effects; quality of evidence was low or moderate for comparison of buprenorphine to clonidine or lofexidine, methadone, and very low for dose reduction

Evidentiary Table.

Study & Year Published	Class of Evidence	Setting & Study Design	Methods & Outcome Measures	Results	Limitations & Comments
Meader ²⁵ (2010)	III for Q1	Systematic review of RCTs involving treatment with buprenorphine, methadone, clonidine, or lofexidine for opioid detoxification	Used a “mixed treatment comparison approach” where treatments could be ranked; used WinBUGS software to do 80,000 MCMC simulations; main outcome measure appears to be only “completion of treatment”	23 RCTs identified with data on 2,112 patients; buprenorphine was more effective than clonidine (OR 3.95; 95% credible interval 2.01 to 7.46), but not for lofexidine (OR 2.64; 95% credible interval 0.9 to 7.5); buprenorphine may be more effective than methadone (OR 1.64; 95% credible interval 0.68 to 3.79); methadone was more effective than clonidine (OR 2.42; 95% credible interval 1.07 to 5.37) but not necessarily more effective than lofexidine (OR 1.62; 0.6 to 4.58); buprenorphine had the highest probability (85%) of being the most effective treatment followed by methadone (12.1%), lofexidine (2.6%), and then clonidine (0.01%); comparison between buprenorphine and methadone did not show a statistically significant difference	RCT settings not specified; criteria for “effective treatment” in the different studies not elucidated; seems to stress “completion of treatment” but with no information on other outcome measures such as withdrawal severity; unclear if there were 2 independent reviewers of articles, if the quality of individual studies was assessed, and no mention of heterogeneity measurement/sensitivity analyses

832 **Evidentiary Table (continued).**

Study & Year Published	Class of Evidence	Setting & Study Design	Methods & Outcome Measures	Results	Limitations & Comments
Amato et al ²⁶ (2013)	III for Q1	Systematic review of RCTs comparing tapered methadone versus other pharmaceutical modalities for treatment of opioid withdrawal; inpatient and outpatient settings; no studies in EDs	For treatment of opioid withdrawal tapered methadone is compared with adrenergic agonists, opioid agonists (eg, buprenorphine), anxiolytics, and placebo; outcomes: rate of treatment completion, withdrawal scores, side effects, relapse, abstinence at follow-up	23 trials with 2,467 patients met inclusion criteria; comparing methadone versus any other pharmacological treatment, there was no clinical difference observed between the 2 treatments in terms of completion of treatment, 16 studies, 1,381 participants, risk ratio 1.08 (95% CI 0.97 to 1.21); number of participants abstinent at follow-up, 4 studies for tapered methadone versus buprenorphine, 390 participants, risk ratio 0.97 (95% CI 0.69 to 1.37); degree of discomfort for withdrawal symptoms and adverse events, although it was impossible to pool data for the last 2 outcomes	Although primarily directed at a review of tapered methadone for opioid withdrawal, 4 studies compared tapered methadone to buprenorphine – of these, 3 had unclear methods descriptions; 17 of the trials done in inpatient units; studies are not ED based
Hoppe et al ³³ (2015)	III for Q2	Retrospective cohort urban academic ED in Colorado	Compared opioid naïve patients who received and filled a prescription with those who received and did not fill a prescription, and those who did not receive a prescription; defined recurrent use as having another opioid prescription filled 60 days before or 60 days after a date 5 mo after ED visit; data pulled from state prescription drug monitoring system	4,800 patients; 2,496 (52%) opioid naïve; 775 (31% of opioid naïve) patients filled prescription and of these 299 (12%) had recurrent use; for opioid naïve patients who filled a prescription vs those that did not, the OR for recurrent use was 1.8 (95% CI 1.3 to 2.3); for opioid naïve patients who received a prescription but did not fill it compared to those who did not get a prescription, the OR for recurrent use was 0.8 (95% CI 0.5 to 1.3)	Refilling a second opioid prescription does not meet definition of misuse; study limited to one ED setting

Evidentiary Table (continued).

Study & Year Published	Class of Evidence	Setting & Study Design	Methods & Outcome Measures	Results	Limitations & Comments
Friedman et al ³⁴ (2015)	III for Q2	3 arm double-blind RCT in high-volume urban academic ED	Patients presenting with acute low back pain; given naproxen plus: placebo, muscle relaxer (Flexeril), or oxycodone; 10-day supply of medicine; outcome measures of improvement in Roland-Morris Disability Questionnaire and pain at 1 wk and 3 mo after initial ED visit	323 enrolled, 107 placebo, 108 cyclobenzaprine and oxycodone arms; at 1 wk follow-up Roland-Morris Disability Questionnaire improvement was 9.8 in placebo, 10.1 in cyclobenzaprine, and 11.1 in oxycodone group, with no significant between group differences; number of subsequent ED visits similar (3 placebo vs 1 cyclobenzaprine vs 3 oxycodone)	Patients received a 10-day course not a 7-day course of prescription; oxycodone group had a longer duration of low back pain before ED presentation (72 versus 48 and 48 h); fewer patients in oxycodone group used the medications
Busse et al ³⁵ (2018)	III for Q3	Systematic review of 96 RCTs; included trials (1) enrolled patients with chronic noncancer pain, (2) randomized them to an oral or transdermal opioid (pure opioid or a combination product) vs any nonopioid control, and (3) conducted follow-up for at least 4 wks	The primary outcomes were pain intensity (score range, 0 to 10-cm on a visual analog scale for pain at the longest follow-up period; lower is better and the MID is 1 cm), physical functioning (score range, 0 to 100 points on the SF-36 PCS; higher is better and the MID is 5 points), and incidence of vomiting	N=26,169; compared with placebo, opioid use was associated with reduced pain (weighted mean difference, -0.69 cm [95% CI -0.82 to -0.56 cm] on a 10-cm visual analog scale for pain; modeled risk difference for achieving the MID, 11.9% [95% CI 9.7% to 14.1%]), improved physical functioning (weighted mean difference, 2.04 points [95% CI 1.41 to 2.68 points] on the 100-point SF-36 PCS; modeled risk difference for achieving the MID, 8.5% [95% CI 5.9% to 11.2%]), and increased vomiting (5.9% with opioids versus 2.3% with placebo for trials that excluded patients with adverse events during a run-in period)	Evidence was from studies of only low to moderate quality; assessment of long-term associations of opioids with chronic non-cancer pain was not possible because no trial followed up with patients for longer than 6 mo; none of the included studies provided rates of developing opioid use disorder and only 2 reported rates of overdose; numerous outcomes and comparisons were evaluated, including subgroup analyses without adjustment for multiple comparisons; heterogeneity associated with pooled estimates for pain relief and functional improvement among trials of opioids vs placebo may have reduced evidence quality

Evidentiary Table (continued).

Study & Year Published	Class of Evidence	Setting & Study Design	Methods & Outcome Measures	Results	Limitations & Comments
Edlund et al ³⁶ (2014)	III for Q3	Retrospective cohort study of claims data from HealthCore database from 2000 to 2005	Compared rate of developing opioid use disorder among new chronic noncancer pain diagnoses who were or were not prescribed opioids	N=568,640; patients with chronic noncancer pain who were prescribed opioids had higher rate of developing opioid use disorder than those not prescribed opioids; patients prescribed opioids had significantly higher rates of opioid use disorders compared with those not prescribed opioids; effects varied by average daily dose and days supply: low dose, acute (OR 3.03; 95% CI 2.32 to 3.95); low dose, chronic (OR 14.92; 95% CI 10.38 to 21.46); medium dose, acute (OR 2.80; 95% CI, 2.12, 3.71); medium dose, chronic (OR 28.69; 95% CI 20.02 to 41.13); high dose, acute (OR 3.10; 95% CI, 1.67 to 5.77); and high dose, chronic (OR 122.45; 95% CI 72.79 to 205.99)	Included measures of painful diagnostic conditions, but no measure of pain severity or activity interference; unable to verify if patients had an undiagnosed problem or opioid use disorder prior to 6 mo before opioid therapy was initiated; study included only individuals with commercial insurance

838

Evidentiary Table (continued).

Study & Year Published	Class of Evidence	Setting & Study Design	Methods & Outcome Measures	Results	Limitations & Comments
Shah et al ³¹ (2017)	III for Q3	Retrospective convenience sample of 10% of patients in the IMS Lifelink+ database	Analyzed duration of use, number of prescriptions, and cumulative dose of patients with first episode opioid use, time to discontinuation of opioids	N=1,294,247; 33,548 (2.6%) who continued therapy for over 1 y; of patients who took at least 1 day of opioids, probability of continued use at 1 y and 3 y was 6.0% and 2.9%, respectively	

839

840

841

842

CI, confidence interval; *cm*, centimeter; *ED*, emergency department; *h*, hour; *MID*, minimally important difference; *MME*, morphine milligram equivalents; *mo*, month; *NSAID*, nonsteroidal anti-inflammatory drug; *OR*, odds ratio; *RCT*, randomized controlled trial; *SF-36 PCS*, 36-item Short Form physical component score; *wk*, week; *y*, year.