1	Clinical Policy: Critical Issues in the Management of Adult Patients Presenting to the Emergency
2	Department with Seizures
3	This DRAFT is EMBARGOED – Not for Distribution
4	
5	
6	From the American College of Emergency Physicians Clinical Policies Subcommittee (Writing Committee) on
7	Seizures:
8	
9	Michael D. Smith, MD, MBA (Writing Committee Chair)
10	Christopher S. Sampson, MD
11	Stephen P. Wall, MD, MSc, MAEd (Methodologist)
12	Deborah B. Diercks, MD, MSc (Committee Chair)
13	
14	
15	Members of the American College of Emergency Physicians Clinical Policies Committee (Oversight Committee):
16	
17	Deborah B. Diercks, MD, MSc (Co-Chair 2021-2023, Chair 2022-2023)
18	John D. Anderson, MD
19	Richard Byyny, MD, MSc (Methodologist)
20	Christopher R. Carpenter, MD, MSc
21	Benjamin Friedman, MD (Methodologist)
22	Seth R. Gemme, MD
23	Charles J. Gerardo, MD, MHS
24	Steven A. Godwin, MD
25	Sigrid A. Hahn, MD, MPH
26	Benjamin W. Hatten, MD, MPH
27	Jason S. Haukoos, MD, MSc (Methodologist)
28	Amy Kaji, MD, MPH, PhD (Methodologist)
29	Heemun Kwok, MD, MS (Methodologist)
30	Bruce M. Lo, MD, MBA, RDMS
31	Sharon E. Mace, MD
32	Maggie Moran, MD (EMRA Representative 2022-2023)
33	Susan B. Promes, MD, MBA
34 25	Kausnal H. Snan, MD
30	Richard D. Shin, MD
30	Scott M. Silvers, MD
3/ 20	Andrea Silvinski, KN, DNP (ENA Representative 2021-2023) Michael D. Smith MD, MDA
20 20	Michael D. Siniui, MD, MBA
39 40	Christian A. Tomoszowski, MD. MS. MDA
40	Christian A. Tomaszewski, MD, MS, MDA Steev Trent MD, MDH (Methodologist)
41	Jonathan H. Valente, MD
+∠ ∕\3	Johannan II. Valente, MD
43 ΛΛ	Stephen P. Wall MD. MSc. MAEd (Methodologist)
44 45	Vanling Vu PhD (Washington Advocates for Patient Safety)
т <i>)</i> 46	John T. Finnell MD (Board Liaison 2020-2023)
47	Travis Schulz MIS AHIP Staff Liaison Clinical Policies Committee and Writing Committee on Seizures
48	Kaeli Vandertulin MSLS MBA AHIP Staff Liaison Clinical Policies Committee
49	Kuon vandertamp, wollo, willt, trifft, otari Liaison, ennicari oneles commute
50	

51 ABSTRACT

This clinical policy from the American College of Emergency Physicians addresses key issues in the evaluation and management of adult emergency department patients presenting with seizure. A writing committee conducted a systematic review of the literature to derive evidence-based recommendations to answer the following clinical-question: In emergency department patients with generalized convulsive status epilepticus who continue to have seizures despite receiving optimal dosing of benzodiazepine, which agent or agents should be administered next to terminate seizures? Evidence was graded and recommendations were made based on the strength of the available data.

59

60 INTRODUCTION

61 Seizure is a presentation that emergency physicians will manage, accounting for about 1% of all emergency department (ED) visits.^{1,2} First-line treatment for recurrent seizures is the appropriate dosing of 62 benzodiazepines with second-line treatment including agents such as phenytoin, levetiracetam, and valproic acid. 63 Status epilepticus is defined as a seizure lasting longer than 5 minutes or multiple seizures without a return to 64 65 neurologic baseline. Management can be clinically challenging in discerning postictal patients from those 66 suffering from sub-clinical nonconvulsive status epilepticus and potentially lacking real time electroencephalogram monitoring in the ED. Furthermore, noncompliance with antiepileptic drug therapy may 67 make the patient more likely to present to the ED with seizure. An additional complication is that prescribed 68 69 (example: tramadol) and illicit substance use (example: cocaine) can lower the seizure threshold. Compounding 70 this may be the time needed to obtain quantitative levels of antiepileptic medications in real time. The 2014 ACEP clinical policy "Clinical Policy: Critical Issues in the Evaluation and Management of 71 Adult Patients Presenting to the Emergency Department With Seizures," addressed several critical questions in 72 emergency seizure evaluation and management.³ Included in these questions, was the question "In ED patients 73

vith generalized convulsive status epileptics who continue to have seizures despite receiving optimal dosing of a

benzodiazepine, which agent or agents should be administered next to terminate seizures?". After careful

- 76 consideration, the Clinical Policies Committee agreed that an update to this question was appropriate. The
- committee also agreed that the other questions on treatment of a first seizure, the need for admission for a first

78 seizure where the patient has returned to baseline, and the route of administration for resuming a patient's

79 medications were adequately addressed by the prior clinical policy.

- 80 This current policy readdresses the appropriate second-line agents in patients with refractory seizures in 81 the emergency department that have been appropriately dosed with benzodiazepines.
- 82

83 METHODOLOGY84

This ACEP clinical policy was developed by emergency physicians with input from medical librarians and a patient safety advocate and is based on a systematic review and critical, descriptive analysis of the medical literature and is reported in accordance with Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines.⁴

89

90 Search and Study Selection

This clinical policy is based on a systematic review with critical analysis of the medical literature meeting the inclusion criteria. Searches of PubMed, SCOPUS, Embase, Web of Science, and the Cochrane Database of Systematic Reviews were performed by a librarian. Search terms and strategies were peer reviewed by a second librarian. All searches were limited to human studies published in English. Specific key words/phrases, years used in the searches, dates of searches, and study selection are identified under the critical question. In addition, relevant articles from the bibliographies of included studies and more recent articles identified by committee members and reviewers were included.

Using Covidence (Covidence, Melbourne, Australia), two subcommittee members independently reviewed the identified abstracts to assess for possible inclusion. Of those identified for potential inclusion, each full-length text was reviewed for eligibility. Those identified as eligible were subsequently abstracted and forwarded to the committee's methodology group (emergency physicians with specific research methodological expertise) for methodological grading using a Class of Evidence framework (Appendix E1).

103

104 Assessment of Risk of Bias and Determination of Classes of Evidence

105 Each study identified as eligible by the subcommittee was independently graded by two methodologists.

Design 1 represents the strongest possible study design to answer the critical question, which relates to whether the focus was therapeutic, diagnostic, or prognostic, or a meta-analysis. Subsequent design types (ie, Design 2 and Design 3) represent respectively weaker study designs. Articles are then graded on dimensions related to the study's methodological features and execution, including but not limited to randomization processes, blinding, allocation concealment, methods of data collection, outcome measures and their assessment, selection and misclassification biases, sample size, generalizability, data management, analyses, congruence of results and conclusions, and potential for conflicts of interest.

113 Using a predetermined process that combines the study's design, methodological quality, and applicability 114 to the critical question, two methodologists independently assigned a preliminary Class of Evidence grade for each 115 article. Articles with concordant grades from both methodologists received that grade as their final grade. Any 116 discordance in the preliminary grades was adjudicated through discussion which involved at least one additional 117 methodologist, resulting in a final Class of Evidence assignment (ie, Class I, Class II, Class III, or Class X) (Appendix E2). Studies identified with significant methodologic limitations and/or ultimately determined to not be 118 applicable to the critical question received a Class of Evidence grade "X" and were not used in formulating 119 120 recommendations for this policy. However, content in these articles may have been used to formulate the 121 background and to inform expert consensus in the absence of evidence. Classes of Evidence grading may be found 122 in the Evidentiary Table included at the end of this policy.

- 123
- 124 Translation of Classes of Evidence to Recommendation Levels

Based on the strength of evidence for the critical question, the subcommittee drafted the recommendations and supporting text synthesizing the evidence using the following guidelines:

127 Level A recommendations. Generally accepted principles for patient care that reflect a high degree of 128 scientific certainty (eg, based on evidence from one or more Class of Evidence I, or multiple Class of Evidence II 129 studies that demonstrate consistent effects or estimates).

130 Level B recommendations. Recommendations for patient care that may identify a particular strategy or 131 range of strategies that reflect moderate scientific certainty (eg, based on evidence from one or more Class of 132 Evidence II studies, or multiple Class of Evidence III studies that demonstrate consistent effects or estimates). Level C recommendations. Recommendations for patient care that are based on evidence from Class of Evidence III studies or, in the absence of adequate published literature, based on expert consensus. In instances where consensus recommendations are made, "consensus" is placed in parentheses at the end of the recommendation.

There are certain circumstances in which the recommendations stemming from a body of evidence should not be rated as highly as the individual studies on which they are based. Factors such as consistency of results, uncertainty of effect magnitude, and publication bias, among others, might lead to a downgrading of recommendations. When possible, clinically-oriented statistics (eg, likelihood ratios [LRs], number needed to treat) are presented to help the reader better understand how the results may be applied to the individual patient. This can assist the clinician in applying the recommendations to most patients but allow adjustment when applying to patients with extremes of risk (Appendix E3).

144

145 Evaluation and Review of Recommendations

Once drafted, the policy was distributed for internal review (by members of the entire committee) followed by external expert review and an open comment period for all ACEP membership. Comments were received during a 60-day open comment period with notices of the comment period sent electronically to ACEP members, published in *EM Today*, posted on the ACEP Web site, and sent to other pertinent physician organizations. The responses were used to further refine and enhance this clinical policy, although responses do not imply endorsement. Clinical policies are scheduled for revision every 3 years; however, interim reviews are conducted when technology, methodology, or the practice environment changes significantly.

153

154 Application of the Policy

This policy is not intended to be a complete manual on the evaluation and management of adult patients with seizure, but rather a focused examination of a critical question that has particular relevance to the current practice of emergency medicine. Potential benefits and harms of implementing recommendations are briefly summarized within the critical question. It is the goal of the Clinical Policies Committee to provide evidence-based recommendations when the scientific literature provides sufficient quality information to inform recommendations for the critical question. In accordance with ACEP Resolution 56(21), ACEP clinical policies do not use race-based calculators in the formulation of recommendations. When the medical literature does not contain adequate empirical data to inform the critical question, the members of the Clinical Policies Committee believe that it is equally important to alert emergency physicians to this fact.

165 This clinical policy is not intended to represent a legal standard of care for emergency physicians. 166 Recommendations offered in this policy are not intended to represent the only diagnostic or management options 167 available to the emergency physician. ACEP recognizes the importance of the individual physician's judgment and 168 patient preferences. This guideline provides clinical strategies for which medical literature exists to inform the 169 critical question addressed in this policy. ACEP funded this clinical policy.

170

171 *Scope of Application.* This guideline is intended for physicians working in EDs.

- 172 *Inclusion Criteria.* This guideline is intended for adult patients aged 18 years and older presenting to the
- 173 ED with generalized convulsive seizures.
- 174 *Exclusion Criteria.* This guideline is not intended for pediatric patients, pregnant patients, patients with
- 175 complex partial seizures, patients with acute head trauma or multisystem trauma, patients with brain mass or brain
- tumor, immunocompromised patients, patients with eclampsia, or patients in the prehospital environment.
- 177

179

178 CRITICAL QUESTION

180 In emergency department patients with generalized convulsive status epilepticus who continue to have 181 seizures despite receiving optimal dosing of benzodiazepine, which agent or agents should be administered 182 next to terminate seizures?

183

184 Patient Management Recommendations

- 185 *Level A recommendations.* Emergency physicians should treat seizures refractory to appropriately dosed
- 186 benzodiazepines with a second-line agent. Either fosphenytoin, levetiracetam, or valproate may be used with

187 similar efficacy.

- 188 *Level B recommendations.* None specified.
- 189 *Level C recommendations.* None specified.

190	
191 192	Potential Benefit of Implementing the Recommendations: Reduced morbidity and mortality from undertreated seizures
192	- Reduced motorary and mortanty nom undertredied seizures.
194	Potential Harm of Implementing the Recommendations:
195	• Adverse effects from fosphenytoin, levetiracetam, or valproate, including continued convulsions,
196	altered level of consciousness, or respiratory distress.
197	
198	
199	Key words/phrases for literature searches: anticonvulsants, barbiturates, benzodiazepines, emergency
200	medicine, epilepsy, hypnotics, ketamine, perampanel, recurrent status epilepticus, refractory status epilepticus,
201	sedatives, seizures, status epitepitcus and variations and combinations of the key words/phrases. Searches
202	included January of 2011 to search dates of February 4, 5, 6, 7, and 8, 2022.
203	Study Selection: Nine hundred twelve articles were identified in the searches. Twenty five were selected
204	from the search results as potentially addressing this question and were condidates for further review. After
203	areding for methodological rigor 1 Class I study 1 Class II study and 1 Class III study were included for this
200	critical question (Appendix F4)
207	entical question (Appendix 14).
200	
209	The 3 papers included in this review were composed of research from the Established Status Epilepticus
210	Treatment Trial (ESETT) (clinicaltrials.gov, NCT01960075). ESETT was a double-blinded-comparative
211	effectiveness trial that included patients aged 2 years and older who presented to an ED (57 academic, pediatric,
212	and community hospitals across the United States) with ongoing convulsive seizures. To be included in the study,
213	patients had to have been treated with an appropriate benzodiazepine (classified as diazepam 10 mg, lorazepam 4
214	mg, midazolam 10 mg, or a weight-based equivalent) for their seizures. A blinded comparison was made between
215	levetiracetam (60 mg/kg), fosphenytoin (20 mg/kg), and valproate (40 mg/kg) as an anticonvulsant treatment for
216	status epilepticus. The doses chosen were based on published experience in treating status epilepticus. The
217	primary outcome was absence of clinically apparent seizure activity and an improvement in responsiveness at 60
218	minutes from infusion of treatment medication. No additional medications could be given, even if intubation
219	medications were required. The seizure activity was defined by the treating emergency physician as any visual
220	movements that were considered consistent with focal or generalized seizures. One limitation was the visual
221	confirmation of seizure activity and not the use of electroencephalography.
222	The primary safety outcome was life-threatening hypotension or cardiac arrythmia occurring within the
223	60 minutes after start of medication infusion. Life-threatening hypotension required 2 consecutive readings of
224	systolic pressure at least 10 minutes apart below age-specified thresholds. Endotracheal intubation was also
225	recorded if required. Frequency of life-threatening hypotension was 0.7% in levetiracetam group, 3.2% in

fosphenytoin group, and 1.6% in valproate group. Arrythmias were only seen in 0.7% of the levetiracetam group.
Endotracheal intubation occurred in 20% of levetiracetam group, 26.4% of the fosphenytoin group, and 16.8% of
the valproate group. None of the safety outcomes were significantly different. The most frequent serious adverse
events found in 42% of the subjects were continued convulsions, altered level of consciousness, and respiratory
distress.

In a Class I study, Kapur et al published initial data from ESETT.⁵ A total of 400 patient encounters were 231 232 assessed for eligibility, enrolled, and underwent randomization. After excluding 16 patients for repeat enrollment 233 in the intention-to-treat population, 384 unique patients were randomly assigned to 1 of 3 groups receiving IV levetiracetam (145), IV fosphenytoin (118), or IV valproate (121).⁵ Patients aged 2 years and older were eligible 234 235 for inclusion in the study. The primary outcome of cessation of status epilepticus and improvement in the level of 236 consciousness at 60 minutes was reached in 68 patients who received levetiracetam (47%), 53 patients who received fosphenytoin (45%), and 56 patients who received valproate (46%). Secondary outcomes included time 237 238 to termination of seizures, but this was only investigated in a subgroup where audio recordings were available to 239 confirm the time of seizure cessation. Additional secondary outcomes were admission to the intensive care unit, 240 length of intensive care unit stay, and overall length of hospital stay. Numerically more episodes of hypotension 241 were present in the fosphenytoin group, but it was found not to be significant. The authors concluded that in benzodiazepine refractory status epilepticus, the use of the studied anticonvulsants led to cessation of seizures in 242 about half of all patients with a similar incidence of adverse events no matter which medication was used.⁵ 243 244 Although this policy focused on adults, 39% of the ESETT subjects were pediatric (up to 17 years), subgroup 245 analyses suggest findings may be relevant for adult and pediatric patients (ages included); but our search excluded 246 pediatric patients so our recommendations are limited to adults.

In a Class II study, Chamberlain et al took the ESETT data and examined 3 age groups, <18 years, 18 to 65 years, and >65 years, to determine if age played a role in medication efficacy.⁶ A total of 237 adult patients were included in this study, which accounted for just over half the study group. Adults 18 to 65 made up over 75% of the adults (N=186), and older adults (>65 years) made up just under the remaining 25% (N=51). The primary outcome was numerically found to be the greatest for adults (ages 18 to 65) in the fosphenytoin group at 46% (95% credible interval [CrI] 34 to 59), followed by the valproate group at 46% (95% CrI 34 to 58), and the 253 levetiracetam group at 44% (95% CrI 33 to 55). In older adults, greatest success was found in the valproate group 254 at 47% (95% CrI 25 to 70), followed by levetiracetam group at 37% (95% CrI 19 to 59), and the fosphenytoin 255 group at 35% (95% CrI 17 to 59). Secondary safety outcomes were similar across all the adult groups. No 256 statistical difference was found between any age group with respect to the primary outcome. The authors 257 concluded that among children, adults, and older adults, the cessation of seizures occurred again in roughly half of all patients receiving 1 of the 3 medications. These results were similar to the overall ESETT findings.⁶ 258 In a Class III study using the ESETT data, Wabl et al investigated whether the use of the patient's home 259 260 anticonvulsant medication as a second-line treatment for status epilepticus had an improved effect on seizure cessation.⁷ In this preferred subgroup analysis, the patient's home medication lists were compared to the study 261 drug given during their ED visit and checked whether they received a similar study medication.⁷ Home 262 263 medication concurrence was found if the patient took levetiracetam or brivaracetam at home and received study 264 levetiracetam, or reported home use of phenytoin and received study fosphenytoin, or took valproate at home and received study valproate. Out of the 462 unique patients included in the study, a total of 232 (50%) were taking 1 265 to 2 of the 3 possible study medications used in ESETT.⁷ The primary outcome was found in 39 of 89 patients 266 (44%) who were randomized to their home medication group. In those randomized to a non-home medication 267 group, the primary outcome was seen in 76 of 143 patients (53%). The authors concluded that for patients 268 presenting to an ED with status epilepticus, the use of the home medication as a second-line agent did not affect 269

271

270

272 Summary

probability of stopping the seizures.⁷

In the setting of benzodiazepine resistant status epilepticus, the use of levetiracetam, fosphenytoin, or valproate will result in cessation of seizures in approximately half of all patients. This outcome is not influenced by the patient's home medications or age. The benefit of early treatment and cessation of status epilepticus is a reduction in morbidity and mortality. The harms appear to be limited to the potential for an adverse drug reaction.

277

278 <u>Future Research</u>

279 Despite multiple previous studies investigating medications to abort status epilepticus, only the 3 included 280 studies from the ESETT trial met methodologic inclusion criteria for this review. Additional studies on second281 line medications for status epilepticus are warranted. In addition, the ESETT studies only focused on outcomes at 282 60 minutes, further research on the longer-term outcomes or recurrence of status epilepticus during the initial 24 to 48 hours would be useful. Specific seizure etiologies are another area for possible investigation such as toxin, 283 284 metabolic, or intracerebral hemorrhage related seizures. Although, the ESETT trial did a subgroup analysis of 285 toxin-related seizures, there is not enough data to support recommendations for the treatment of status epilepticus secondary to toxins or alcohol withdrawal where fosphenytoin may not be effective.⁸ 286 In addition, prospective areas of research in the treatment of status epilepticus should include additional 287 medication therapies such as lacosamide, ketamine, propofol, and barbiturates.9-11 288 289 As previously suggested in the 2014 ACEP Clinical policy, research should also focus on accurately identifying convulsive seizures and non-convulsive status epilepticus. This research could focus on the use of 290 291 electroencephalogram within the ED to better correctly identify these patients. 292

Relevant industry relationships: There were no relevant industry relationships disclosed by the
 subcommittee members for this topic.
 Relevant industry relationships are those relationships with companies associated with products or

services that significantly impact the specific aspect of disease addressed in the critical question.

297

298	REFE	CRENCES
299		
300	1.	Bank AM, Bazil CW. Emergency management of epilepsy and seizures. Semin Neurol. 2019;39:73-81.
302	2.	Pallin DJ, Goldstein JN, Moussally JS, Pelletier AJ, Green AR, Camargo CA Jr. Seizure visits in US
303		emergency departments: epidemiology and potential disparities in care. Int J Emerg Med. 2008;1:97-105
304		
305 306	3.	Huff JS, Melnick ER, Tomaszewski CA, et al. Clinical policy: critical issues in the evaluation and management of adult patients presenting to the emergency department with seizures [published correction]
307		appears in Ann Emerg Med. 2017 Nov:70(5):758]. Ann Emerg Med. 2014:63:437-47.
308		
309	4.	Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for
310		reporting systematic reviews. BMJ. 2021;372:n71.
311 212	F	Kenne I. Elm I. Chamberlein M. et al. Dandamined Trial of Three Anti-complement Mediactions for Status
31Z 212	5.	Kapur J, Elm J, Chamberlain JM, et al. Randomized Trial of Three Anticonvulsant Medications for Status
313		Ephepheus. N Engl J Meu. 2019,381.2103-2113.
315	6	Chamberlain IM Kapur I Shinnar S et al Efficacy of levetiracetam fosphenytoin and valproate for
316	0.	established status epilepticus by age group (ESETT): a double-blind, responsive-adaptive, randomised
317		controlled trial. <i>Lancet</i> . 2020;395:1217-1224.
318		
319	7.	Wabl R, Terman SW, Kwok M, et al. Efficacy of Home Anticonvulsant Administration for Second-Line
320		Status Epilepticus Treatment. Neurology. 2021;97:e720-e727.
321		
322	8.	Chen HY, Albertson TE, Olson KR. Treatment of drug-induced seizures. Br J Clin Pharmacol.
323		2016;81:412-419.
324		
325	9.	Rosati A, De Masi S, Guerrini R. Ketamine for Refractory Status Epilepticus: A Systematic Review. CNS
326		Drugs. 2018;32:997-1009.
327	10	
328	10.	Zhang Q, Yu Y, Lu Y, Yue H. Systematic review and meta-analysis of propofol versus barbiturates for
329		controlling refractory status epilepticus. BMC Neurol. 2019;19:55.
330	11	Bernetti AQ Beighbert MD Scholler MD Develoy I DA Deservedender L Develop foltmetre ent of
222	11.	refrectory status epilenticus; a study of 21 episodes. <i>Epilepsia</i> , 2004:45:757,762
332 222		remaciony status epitepiteus, a study of 51 episodes. Epitepsia. 2004;45:757-705.
555		

334 Appendix E1. Literature classification schema.*

Design/ Class	Therapy [†]	Diagnosis [‡]	Prognosis [§]	
1	Randomized, controlled trial or meta-analysis of randomized trials	Prospective cohort using a criterion standard or meta-analysis of prospective studies	Population prospective cohort or meta-analysis of prospective studies	
2	Nonrandomized trial	Retrospective observational	Retrospective cohort Case control	
3	Case series	Case series	Case series	

*Some designs (eg, surveys) will not fit this schema and should be assessed individually.

[†]Objective is to measure therapeutic efficacy comparing interventions.

[‡]Objective is to determine the sensitivity and specificity of diagnostic tests.

- [§]Objective is to predict outcome, including mortality and morbidity.
- 339

340 Appendix E2. Approach to downgrading strength of evidence.

]	Design/Class	
Downgrading	1	2	3
None	I	II	III
1 level	II	III	X
2 levels	III	X	X
Fatally flawed	X	X	X

352

354

LR (+)	LR (-)	
1.0	1.0	Does not change pretest prob

1.0	1.0	Does not change pretest probability
1–5	0.5–1	Minimally changes pretest probability
10	0.1	May be diagnostic if the result is concordant with
		pretest probability
20	0.05	Usually diagnostic
100	0.01	Almost always diagnostic even in the setting of low or
		high pretest probability

355 356 *LR*, likelihood ratio.

*Number needed to treat (NNT): number of patients who need to be treated to achieve 1

additional good outcome; NNT=1/absolute risk reduction×100, where absolute risk reduction is the risk
 difference between 2 event rates (ie, experimental and control groups).

359 360

³⁵³ Appendix E3. Likelihood ratios and number needed to treat.*

Appendix E4. PRISMA⁴ flow diagrams.

Evidentiary Table.

Author & Year	Class of	Setting &	Methods & Outcome Measures	Results	Limitations & Comments
Published	Evidence	Study Design			
Kapur et al ⁵	Ι	ESETT trial; 57	Assessed comparative	N=384; trial stopped	Limitations of this trial
(2019)		hospital EDs	effectiveness of levetiracetam,	early for futility to find	included need for
		across the	fosphenytoin, and valproate	a most effective or least	unblinding in some
		United States,	given by IV infusion over 10	effective treatment;	instances in order to choose
		included	minutes for treatment of status		a second anticonvulsant to
		academic,	epilepticus in the ED; primary	Seizure improvement at	treat ongoing seizures
		pediatric, and	outcome: absence of clinically	<60 minutes:	(occurring after the
		community	apparent seizures and improved	 levetiracetam 47% 	determination of the
		hospitals;	responsiveness 60 minutes after	(95% CrI 39 to 55)	primary outcome in most
		November 2015	start of trial-drug infusion	• fosphenytoin 45%	patients); 10% of the
		to October 2017;	without additional	(95% CrI 36 to 54)	patients enrolled had
		double-blinded	anticonvulsant medication;	• valproate 46%	psycho-genic nonepileptic
		adaptive	secondary outcomes included	(95% CrI 38 to 55)	seizures; 135 protocol
		randomized	time to seizure termination;		violations but equally
		clinical trial	patients were included if they	Median time to seizure	distributed among groups;
			were age 2 years and older,	termination:	clinical rather than
			treated with accepted cumulative	• levetiracetam	electroencephalogram
			dose of benzodiazepines for	10.5 minutes	criteria used to determine
			generalized convulsive seizures	(IQR 5.7 to 15.5)	the primary outcome of
			>5 minutes, continued to have	• fosphenytoin	seizure cessation; was not
			persistent or recurrent seizures	11.7 minutes	possible to distinguish
			after 5 to 30 minutes after the	(IQR 7.5 to 20.9)	postictal or benzodiazepine-
			last dose of benzodiazepine;	• valproate	related sedation from
			excluded major traumas,	7.0 minutes	continued non-convulsive
			hypoglycemia, hyperglycemia,	(IOR 4.6 to 14.9)	status epilepticus as the
			cardiac arrests, postanoxia;		cause of treatment failure in
			pregnancy, incarceration,		52 patients who had
			wearing medical alert tag		resolution of clinically
			marked "ESETT declined",		evident seizure without
			treated with alternative		additional anticonvulsant
			anticonvulsant agents prior to		medications but did not
			enrollment, intubation, allergies		have improving
			to any of the study medications		consciousness at 60 minutes

Author & Year	Class of	Setting &	Methods &	Results	Limitations and Comments
Published	Evidence	Study Design	Outcomes Measures		
Chamberlain et al ⁶	II	ESETT trial (see	Primary outcome:	N=462; added 76 children	See Kapur 2019; few older
(2020)		Kapur 2019 –	absence of clinically	and 2 adults to the	adults enrolled compared to
		original	apparent seizures and	enrollment from the original	children and adults 65 years and
		outcomes	improved	trail; 225 children, 186	younger
		paper);	responsiveness 60	adults, 51 older adults >65	
		enrollment	minutes after start of	years; no differential impact	
		continued to	trial-drug infusion	of study medications in total	
		assess	without additional	or stratified by age; seizure	
		comparative	anticonvulsant	improvement <60 minutes:	
		effectiveness in	medication; secondary	levetiracetam 47% (95% CrI	
		children;	outcomes included	39 to 54), fosphenytoin 46%	
		November 2015	time to seizure	(95% CrI 38 to 55),	
		to December	termination; primary	valproate 49% (95% CrI 41	
		2018	safety outcome was a	to 57); trend that children	
			composite of life-	had higher response rates but	
			threatening	not significant; no	
			hypotension or life-	differential impact on safety	
			threatening cardiac	outcomes aside for more	
			arrhythmia; secondary	intubations of children in the	
			safety outcomes were	fosphenytoin group (33%)	
			need for endotracheal	versus 8% in the	
			intubation within 60	levetiracetam and 11% in the	
			minutes of the start of	valproate groups	
			study drug infusion,		
			acute seizure		
			recurrence 60 minutes		
			to 12 hours after the		
			start of study drug		
			infusion, acute		
			respiratory depression		
			at any time during the		
			study period, and		
			mortality		

365 Evidentiary Table (continued).

Author & Year	Class of	Setting & Study	Methods & Outcomes	Results	Limitations and Comments
Published	Evidence	Design	Measures		
Wabl et al ⁷	III	Unplanned	Analyzed outcomes	N=232 patients; 74% on	See comments for Kapur
(2021)		tertiary analysis	comparing patients who	levetiracetam only, 6%	2019 and Chamberlain 2020;
		of ESETT trial	randomly received the	levetiracetam and phenytoin, 7%	few patients were home
		data (see Kapur	same medication as	levetiracetam and valproate, 5%	prescribed medications other
		2019 – original	what the patients are	phenytoin only, 7% valproate only,	than levetiracetam, limiting
		outcomes paper	prescribed for seizure	and 1% phenytoin and valproate;	conclusions about the group
		and Chamberlain	treatment/prophylaxis;	among participants who were	in aggregate; patient
		2020 – outcomes	sample restricted to	noncompliant with medications,	compliance with seizure
		age stratified)	patients who were	those receiving concordant therapy	medications was self-
			taking either 1 or 2	trended towards improved	reported
			study drugs at home	outcomes; those who were	
				compliant trended towards	
				improved outcomes after receiving	
				alternative therapies; the primary	
				seizure cessation outcome	
				occurred in 39 of 89 (44%, 95% CI	
				34% to 54%) patients treated with	
				a home medication versus 76 of	
				143 (53%, 95% CI 45% to 61%)	
				patients treated with a nonhome	
				medication; among the 204	
				patients taking home	
				levetiracetam, 27 of 72 (38%, 95%	
				CI 26% to 49%) patients treated	
				with study leveliracetam achieved	
				seizure cessation, while 74 of 132	
				(56%, 95% CI 48% to 65%)	
				patients treated with study	
				tosphenytoin or valproate	
				treatment achieved cessation;	
				among patients not taking home	
		1		levetiracetam, 55 of 103 (53%,	

367 Evidentiary Table (continued).

	95% CI 44% t	o 63%) patients	
	treated with st	udy levetiracetam	
	cessation, whi	le 73 of 155 (47%,	
	95% CI 39% t	o 55%) patients	
	treated with st	udy fosphenytoin or	
	valproate achi	eved the secondary	
	outcome; the i	nteraction between	
	study levetirad	cetam and home	
	levetiracetam	was significant (P=	
	0.01)	Ĵ,	

CI, confidence interval; *CrI*, credible interval; *ED*, emergency department; *ESETT*, Established Status Epilepticus Treatment Trial; *IQR*, interquartile range.